The Finite Element Method in Heat Transfer Analysis

The Finite Element Method in Heat Transfer Analysis

Author: Roland W. Lewis

Publisher: John Wiley & Sons

Published: 1996-08-06

Total Pages: 296

ISBN-13: 9780471943624

DOWNLOAD EBOOK

Heat transfer analysis is a problem of major significance in a vast range of industrial applications. These extend over the fields of mechanical engineering, aeronautical engineering, chemical engineering and numerous applications in civil and electrical engineering. If one considers the heat conduction equation alone the number of practical problems amenable to solution is extensive. Expansion of the work to include features such as phase change, coupled heat and mass transfer, and thermal stress analysis provides the engineer with the capability to address a further series of key engineering problems. The complexity of practical problems is such that closed form solutions are not generally possible. The use of numerical techniques to solve such problems is therefore considered essential, and this book presents the use of the powerful finite element method in heat transfer analysis. Starting with the fundamental general heat conduction equation, the book moves on to consider the solution of linear steady state heat conduction problems, transient analyses and non-linear examples. Problems of melting and solidification are then considered at length followed by a chapter on convection. The application of heat and mass transfer to drying problems and the calculation of both thermal and shrinkage stresses conclude the book. Numerical examples are used to illustrate the basic concepts introduced. This book is the outcome of the teaching and research experience of the authors over a period of more than 20 years.


Fundamentals of the Finite Element Method for Heat and Fluid Flow

Fundamentals of the Finite Element Method for Heat and Fluid Flow

Author: Roland W. Lewis

Publisher: John Wiley and Sons

Published: 2008-02-07

Total Pages: 357

ISBN-13: 0470346388

DOWNLOAD EBOOK

Heat transfer is the area of engineering science which describes the energy transport between material bodies due to a difference in temperature. The three different modes of heat transport are conduction, convection and radiation. In most problems, these three modes exist simultaneously. However, the significance of these modes depends on the problems studied and often, insignificant modes are neglected. Very often books published on Computational Fluid Dynamics using the Finite Element Method give very little or no significance to thermal or heat transfer problems. From the research point of view, it is important to explain the handling of various types of heat transfer problems with different types of complex boundary conditions. Problems with slow fluid motion and heat transfer can be difficult problems to handle. Therefore, the complexity of combined fluid flow and heat transfer problems should not be underestimated and should be dealt with carefully. This book: Is ideal for teaching senior undergraduates the fundamentals of how to use the Finite Element Method to solve heat transfer and fluid dynamics problems Explains how to solve various heat transfer problems with different types of boundary conditions Uses recent computational methods and codes to handle complex fluid motion and heat transfer problems Includes a large number of examples and exercises on heat transfer problems In an era of parallel computing, computational efficiency and easy to handle codes play a major part. Bearing all these points in mind, the topics covered on combined flow and heat transfer in this book will be an asset for practising engineers and postgraduate students. Other topics of interest for the heat transfer community, such as heat exchangers and radiation heat transfer, are also included.


Finite Element Analysis for Heat Transfer

Finite Element Analysis for Heat Transfer

Author: Hou-Cheng Huang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 205

ISBN-13: 1447120914

DOWNLOAD EBOOK

This text presents an introduction to the application of the finite ele ment method to the analysis of heat transfer problems. The discussion has been limited to diffusion and convection type of heat transfer in solids and fluids. The main motivation of writing this book stems from two facts. Firstly, we have not come across any other text which provides an intro duction to the finite element method (FEM) solely from a heat transfer perspective. Most introductory texts attempt to teach FEM from a struc tural engineering background, which may distract non-structural engineers from pursuing this important subject with full enthusiasm. We feel that our approach provides a better alternative for non-structural engineers. Secondly, for people who are interested in using FEM for heat transfer, we have attempted to cover a wide range of topics, presenting the essential the ory and full implementational details including two FORTRAN programs. In addition to the basic FEM heat transfer concepts and implementation, we have also presented some modem techniques which are being used to enhance the accuracy and speed of the conventional method. In writing the text we have endeavoured to keep it accessible to persons with qualifications of no more than an engineering graduate. As mentioned earlier this book may be used to learn FEM by beginners, this may include undergraduate students and practicing engineers. However, there is enough advanced material to interest more experienced practitioners.


Finite Element Analysis In Heat Transfer

Finite Element Analysis In Heat Transfer

Author: Gianni Comini

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 464

ISBN-13: 1482252546

DOWNLOAD EBOOK

This introductory text presents the applications of the finite element method to the analysis of conduction and convection problems. The book is divided into seven chapters which include basic ideas, application of these ideas to relevant problems, and development of solutions. Important concepts are illustrated with examples. Computer problems are also included to facilitate the types of solutions discussed.


The Finite Element Method for Three-Dimensional Thermomechanical Applications

The Finite Element Method for Three-Dimensional Thermomechanical Applications

Author: Guido Dhondt

Publisher: John Wiley & Sons

Published: 2004-11-19

Total Pages: 362

ISBN-13: 0470857625

DOWNLOAD EBOOK

Though many 'finite element' books exist, this book provides a unique focus on developing the method for three-dimensional, industrial problems. This is significant as many methods which work well for small applications fail for large scale problems, which generally: are not so well posed introduce stringent computer time conditions require robust solution techniques. Starting from sound continuum mechanics principles, derivation in this book focuses only on proven methods. Coverage of all different aspects of linear and nonlinear thermal mechanical problems in solids are described, thereby avoiding distracting the reader with extraneous solutions paths. Emphasis is put on consistent representation and includes the examination of topics which are not frequently found in other texts, such as cyclic symmetry, rigid body motion and nonlinear multiple point constraints. Advanced material formulations include anisotropic hyperelasticity, large strain multiplicative viscoplasticity and single crystal viscoplasticity. Finally, the methods described in the book are implemented in the finite element software CalculiX, which is freely available (www.calculix.de; the GNU General Public License applies). Suited to industry practitioners and academic researchers alike, The Finite Element Method for Three-Dimensional Thermomechanical Applications expertly bridges the gap between continuum mechanics and the finite element method.


The Finite Element Method in Heat Transfer and Fluid Dynamics

The Finite Element Method in Heat Transfer and Fluid Dynamics

Author: J. N. Reddy

Publisher: CRC Press

Published: 2010-04-06

Total Pages: 515

ISBN-13: 1439882576

DOWNLOAD EBOOK

As Computational Fluid Dynamics (CFD) and Computational Heat Transfer (CHT) evolve and become increasingly important in standard engineering design and analysis practice, users require a solid understanding of mechanics and numerical methods to make optimal use of available software. The Finite Element Method in Heat Transfer and Fluid Dynamics, Th


Advances In Numerical Heat Transfer

Advances In Numerical Heat Transfer

Author: W. Minkowycz

Publisher: CRC Press

Published: 1996-11-01

Total Pages: 456

ISBN-13: 9781560324416

DOWNLOAD EBOOK

This is the first volume in the series. It analyzes several fundamental methodology issues in numerical heat transfer and fluid flow and identifies certain areas of active application. The finite-volume approach is presented with the finite-element methods as well as with energy balance analysis. Applications include the latest development in turbulence modeling and current approaches to inverse problems.


Feat3d : a finite element computer code for three-dimensional heat conduction analysis : program description

Feat3d : a finite element computer code for three-dimensional heat conduction analysis : program description

Author: A. Banas

Publisher:

Published: 1982

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Feat3d (finite element analysis of temperatures in three dimensions) is a computer program developed to predict the steady state temperature distribution in a general three-dimensional heat conducting system. it employs the finite element solution technique for the linear heat conduction problems. the numerical formulation handles nonhomogeneities caused by space dependence of thermal conductivity and internal heat generation in the system, as well as varying conditions along the system's boundary. at present, temperature independent conductivity, internal heat generation, heat fluxes through the system's boundary and heat transfer coefficients are allowed. they render a linear system of equations expressing the condition of thermal equilibrium of the system under consideration. this report describes the theory underlying the problem formulation and solution method, together with some implementation details. a separate report contains user instructions, as well as examples illustrating input preparation and output interpretation.