Finite Element Error Analysis for PDE-constrained Optimal Control Problems

Finite Element Error Analysis for PDE-constrained Optimal Control Problems

Author: Dieter Sirch

Publisher: Logos Verlag Berlin GmbH

Published: 2010

Total Pages: 166

ISBN-13: 3832525572

DOWNLOAD EBOOK

Subject of this work is the analysis of numerical methods for the solution of optimal control problems governed by elliptic partial differential equations. Such problems arise, if one does not only want to simulate technical or physical processes but also wants to optimize them with the help of one or more influence variables. In many practical applications these influence variables, so called controls, cannot be chosen arbitrarily, but have to fulfill certain inequality constraints. The numerical treatment of such control constrained optimal control problems requires a discretization of the underlying infinite dimensional function spaces. To guarantee the quality of the numerical solution one has to estimate and to quantify the resulting approximation errors. In this thesis a priori error estimates for finite element discretizations are proved in case of corners or edges in the underlying domain and nonsmooth coefficients in the partial differential equation. These facts influence the regularity properties of the solution and require adapted meshes to get optimal convergence rates. Isotropic and anisotropic refinement strategies are given and error estimates in polygonal and prismatic domains are proved. The theoretical results are confirmed by numerical tests.


Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control

Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control

Author: Boris S. Mordukhovich

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 256

ISBN-13: 1461384893

DOWNLOAD EBOOK

This IMA Volume in Mathematics and its Applications NONSMOOTH ANALYSIS AND GEOMETRIC METHODS IN DETERMINISTIC OPTIMAL CONTROL is based on the proceedings of a workshop that was an integral part of the 1992-93 IMA program on "Control Theory. " The purpose of this workshop was to concentrate on powerful mathematical techniques that have been de veloped in deterministic optimal control theory after the basic foundations of the theory (existence theorems, maximum principle, dynamic program ming, sufficiency theorems for sufficiently smooth fields of extremals) were laid out in the 1960s. These advanced techniques make it possible to derive much more detailed information about the structure of solutions than could be obtained in the past, and they support new algorithmic approaches to the calculation of such solutions. We thank Boris S. Mordukhovich and Hector J. Sussmann for organiz ing the workshop and editing the proceedings. We also take this oppor tunity to thank the National Science Foundation and the Army Research Office, whose financial support made the workshop possible. A vner Friedman Willard Miller, Jr. v PREFACE This volume contains the proceedings of the workshop on Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control held at the Institute for Mathematics and its Applications on February 8-17, 1993 during a special year devoted to Control Theory and its Applications. The workshop-whose organizing committee consisted of V. J urdjevic, B. S. Mordukhovich, R. T. Rockafellar, and H. J.


Constrained Optimization and Optimal Control for Partial Differential Equations

Constrained Optimization and Optimal Control for Partial Differential Equations

Author: Günter Leugering

Publisher: Springer Science & Business Media

Published: 2012-01-03

Total Pages: 622

ISBN-13: 3034801335

DOWNLOAD EBOOK

This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The contributions of this volume, some of which have the character of survey articles, therefore, aim at creating and developing further new ideas for optimization, control and corresponding numerical simulations of systems of possibly coupled nonlinear partial differential equations. The research conducted within this unique network of groups in more than fifteen German universities focuses on novel methods of optimization, control and identification for problems in infinite-dimensional spaces, shape and topology problems, model reduction and adaptivity, discretization concepts and important applications. Besides the theoretical interest, the most prominent question is about the effectiveness of model-based numerical optimization methods for PDEs versus a black-box approach that uses existing codes, often heuristic-based, for optimization.


Finite-difference Approximations and Optimal Control of Differential Inclusions

Finite-difference Approximations and Optimal Control of Differential Inclusions

Author: Yuan Tian

Publisher:

Published: 2015

Total Pages: 81

ISBN-13:

DOWNLOAD EBOOK

This dissertation concerns the study of the generalized Bolza type problem for dynamic systems governed by constrained differential inclusions. We develop finite-discrete approximations of differential inclusions by using the implicit Euler scheme and the Runge-Kutta scheme for approximating time derivatives, while an appropriate well-posedness of such approximations is justified. Our principal result establishes the uniform approximation of strong local minimizers for the continuous-time Bolza problem by optimal solutions to the corresponding discretized finite-difference systems by the strengthen -norm approximation of this type in the case "intermediate" (between strong and weak minimizers) local minimizers under additional assumptions. Especially the implicitly discrete approximation is under the general ROSL setting. Finally, we derive necessary optimality conditions for each scheme for the discretized Bolza problems via suitable generalized differential constructions of variational analysis.


Numerical Methods for Differential Equations, Optimization, and Technological Problems

Numerical Methods for Differential Equations, Optimization, and Technological Problems

Author: Sergey Repin

Publisher: Springer Science & Business Media

Published: 2012-10-13

Total Pages: 446

ISBN-13: 9400752873

DOWNLOAD EBOOK

This book contains the results in numerical analysis and optimization presented at the ECCOMAS thematic conference “Computational Analysis and Optimization” (CAO 2011) held in Jyväskylä, Finland, June 9–11, 2011. Both the conference and this volume are dedicated to Professor Pekka Neittaanmäki on the occasion of his sixtieth birthday. It consists of five parts that are closely related to his scientific activities and interests: Numerical Methods for Nonlinear Problems; Reliable Methods for Computer Simulation; Analysis of Noised and Uncertain Data; Optimization Methods; Mathematical Models Generated by Modern Technological Problems. The book also includes a short biography of Professor Neittaanmäki.


Variational Analysis and Generalized Differentiation I

Variational Analysis and Generalized Differentiation I

Author: Boris S. Mordukhovich

Publisher: Springer Science & Business Media

Published: 2006-08-08

Total Pages: 598

ISBN-13: 3540312471

DOWNLOAD EBOOK

Comprehensive and state-of-the art study of the basic concepts and principles of variational analysis and generalized differentiation in both finite-dimensional and infinite-dimensional spaces Presents numerous applications to problems in the optimization, equilibria, stability and sensitivity, control theory, economics, mechanics, etc.


Numerical Mathematics and Advanced Applications

Numerical Mathematics and Advanced Applications

Author: Karl Kunisch

Publisher: Springer Science & Business Media

Published: 2008-09-19

Total Pages: 825

ISBN-13: 3540697772

DOWNLOAD EBOOK

The European Conference on Numerical Mathematics and Advanced Applications (ENUMATH) is a series of conferences held every two years to provide a forum for discussion on recent aspects of numerical mathematics and their applications. The ?rst ENUMATH conference was held in Paris (1995), and the series continued by the one in Heidelberg (1997), Jyvaskyla (1999), Ischia (2001), Prague (2003), and Santiago de Compostela (2005). This volume contains a selection of invited plenary lectures, papers presented in minisymposia, and contributed papers of ENUMATH 2007, held in Graz, Austria, September 10–14, 2007. We are happy that so many people have shown their interest in this conference. In addition to the ten invited presentations and the public lecture, we had more than 240 talks in nine minisymposia and ?fty four sessions of contributed talks, and about 316 participants from all over the world, specially from Europe. A total of 98 contributions appear in these proceedings. Topics include theoretical aspects of new numerical techniques and algorithms, as well as to applications in engineering and science. The book will be useful for a wide range of readers, giving them an excellent overview of the most modern methods, techniques, algorithms and results in numerical mathematics, scienti?c computing and their applications. We would like to thank all the participants for the attendance and for their va- ablecontributionsanddiscussionsduringtheconference.Specialthanksgothe m- isymposium organizers, who made a large contribution to the conference, the chair persons, and all speakers.