Fermilab

Fermilab

Author: Lillian Hoddeson

Publisher: University of Chicago Press

Published: 2009-08-01

Total Pages: 515

ISBN-13: 0226346250

DOWNLOAD EBOOK

Fermi National Accelerator Laboratory, located in the western suburbs of Chicago, has stood at the frontier of high-energy physics for forty years. Fermilab is the first history of this laboratory and of its powerful accelerators told from the point of view of the people who built and used them for scientific discovery. Focusing on the first two decades of research at Fermilab, during the tenure of the laboratory’s charismatic first two directors, Robert R. Wilson and Leon M. Lederman, the book traces the rise of what they call “megascience,” the collaborative struggle to conduct large-scale international experiments in a climate of limited federal funding. In the midst of this new climate, Fermilab illuminates the growth of the modern research laboratory during the Cold War and captures the drama of human exploration at the cutting edge of science.


Superconducting Technology

Superconducting Technology

Author: Kristian Fossheim

Publisher: World Scientific

Published: 1991

Total Pages: 258

ISBN-13: 9789810206284

DOWNLOAD EBOOK

This book contains an interdisciplinary selection of timely articles which cover a wide range of superconducting technologies ranging from high tech medicine (10-12 Gauss) to multipurpose sensors, microwaves, radio engineering, magnet technology for accelerators, magnetic energy storage, and power transmission on the 109 watt scale. It is aimed primarily at the non-specialist and will be suitable as an introductory course book for those in the relevant fields and related industries. As shown in the title several examples of high-c applications are included. While low-Tc is still the leading technology, for instance, in cables and SQUIDS, case studies in these areas are presented.


Discovery Of The Higgs Boson

Discovery Of The Higgs Boson

Author: Aleandro Nisati

Publisher: World Scientific

Published: 2016-08-26

Total Pages: 470

ISBN-13: 981442546X

DOWNLOAD EBOOK

The recent observation of the Higgs boson has been hailed as the scientific discovery of the century and led to the 2013 Nobel Prize in physics. This book describes the detailed science behind the decades-long search for this elusive particle at the Large Electron Positron Collider at CERN and at the Tevatron at Fermilab and its subsequent discovery and characterization at the Large Hadron Collider at CERN. Written by physicists who played leading roles in this epic search and discovery, this book is an authoritative and pedagogical exposition of the portrait of the Higgs boson that has emerged from a large number of experimental measurements. As the first of its kind, this book should be of interest to graduate students and researchers in particle physics.


The Birth of Particle Physics

The Birth of Particle Physics

Author: Laurie M. Brown

Publisher: CUP Archive

Published: 1986-10-31

Total Pages: 452

ISBN-13: 9780521338370

DOWNLOAD EBOOK

A distinctive collection of essays, discussions, and personal descriptions of the evolution of particle physics.


LHC Physics

LHC Physics

Author: T. Binoth

Publisher: CRC Press

Published: 2012-04-25

Total Pages: 415

ISBN-13: 1439837708

DOWNLOAD EBOOK

Exploring the phenomenology of the Large Hadron Collider (LHC) at CERN, LHC Physics focuses on the first years of data collected at the LHC as well as the experimental and theoretical tools involved. It discusses a broad spectrum of experimental and theoretical activity in particle physics, from the searches for the Higgs boson and physics beyond the Standard Model to studies of quantum chromodynamics, the B-physics sector, and the properties of dense hadronic matter in heavy-ion collisions. Covering the topics in a pedagogical manner, the book introduces the theoretical and phenomenological framework of hadron collisions and presents the current theoretical models of frontier physics. It offers overviews of the main detector components, the initial calibration procedures, and search strategies. The authors also provide explicit examples of physics analyses drawn from the recently shut down Tevatron. In the coming years, or perhaps even sooner, the LHC experiments may reveal the Higgs boson and offer insight beyond the Standard Model. Written by some of the most prominent and active researchers in particle physics, this volume equips new physicists with the theory and tools needed to understand the various LHC experiments and prepares them to make future contributions to the field.


Beam-based Correction and Optimization for Accelerators

Beam-based Correction and Optimization for Accelerators

Author: Xiaobiao Huang

Publisher: CRC Press

Published: 2019-12-05

Total Pages: 254

ISBN-13: 0429784740

DOWNLOAD EBOOK

This book provides systematic coverage of the beam-based techniques that accelerator physicists use to improve the performance of large particle accelerators, including synchrotrons and linacs. It begins by discussing the basic principles of accelerators, before exploring the various error sources in accelerators and their impact on the machine's performances. The book then demonstrates the latest developments of beam-based correction techniques that can be used to address such errors and covers the new and expanding area of beam-based optimization. This book is an ideal, accessible reference book for physicists working on accelerator design and operation, and for postgraduate studying accelerator physics. Features: Entirely self-contained, exploring the theoretic background, including algorithm descriptions, and providing application guidance Accompanied by source codes of the main algorithms and sample codes online Uses real-life accelerator problems to illustrate principles, enabling readers to apply techniques to their own problems Xiaobiao Huang is an accelerator physicist at the SLAC National Accelerator Laboratory at Stanford University, USA. He graduated from Tsinghua University with a Bachelor of Science in Physics and a Bachelor of Engineering in Computer Science in 1999. He earned a PhD in Accelerator Physics from Indiana University, Bloomington, Indiana, USA, in 2005. He spent three years on thesis research work at Fermi National Accelerator Laboratory from 2003-2005. He has worked at SLAC as a staff scientist since 2006. He became Accelerator Physics Group Leader of the SPEAR3 Division, Accelerator Directorate in 2015. His research work in accelerator physics ranges from beam dynamics, accelerator design, and accelerator modelling and simulation to beam based measurements, accelerator control, and accelerator optimization. He has taught several courses at US Particle Accelerator School (USPAS), including Beam Based Diagnostics, Accelerator Physics, Advanced Accelerator Physics, and Special Topics in Accelerator Physics.


Relativistic Channeling

Relativistic Channeling

Author: R. A. Carrigan

Publisher: Springer Science & Business Media

Published: 1987-09

Total Pages: 552

ISBN-13: 9780306426896

DOWNLOAD EBOOK

Channeling, by its nature, involves a wide and disparate range of disciplines. Crystal preparation, material science, accelerator physics, sophisticated theoretical analysis and, of course, channeling itself all must work in concert in a research program. In spite of the gulfs separating some of these activities, researchers have drawn together over the last decade to carry out remarkable experiments in relativistic channeling and channeling radiation. Several informal workshops on high-energy channeling have been held over ~he years at Aarhus and Fermilab. However, with the vigorous progress in the field in the last several years it became clear that a more formal, comprehensive workshop was needed along with a book that covered the whole spectrum of the new developments, probed the future, and also laid out some of the foundations of the subject. This volume is the outcome of that process. The organization and preparation of both the volume and the workshop owe much to several outstanding scientific committees. The membership of these included J. Andersen (Aarhus), S. Baker (Fermilab), B. Berman (G. Washington), G. Bologna (Torino), E. Bonderup (Aarhus), S. Datz (Oak Ridge), J. Forster (Chalk River), F. Fujimoto (Tokyo), W. Gibson (Albany), I. Mitchell (Chalk River), Y. Ohtsuki (Waseda), R. Pantell (Stanford), S. Picraux (Sandia), J. Remillieux (Lyon), A. Saenz (NRL), V. Schegelsky (Gatchina), C. Sun (Albany), H. tiberall (Catholic U. ), E. Uggerh¢j (CERN), and R. Wedell (Humboldt). Others from across the spectrum of scientific disciplines agreed to serve as session chairmen.