A Proposal for First-Ever Measurement of Coherent Neutrino-Nucleus Scattering

A Proposal for First-Ever Measurement of Coherent Neutrino-Nucleus Scattering

Author:

Publisher:

Published: 2008

Total Pages: 10

ISBN-13:

DOWNLOAD EBOOK

We propose to build and deploy a 10-kg dual-phase argon ionization detector for the detection of coherent neutrino-nucleus scattering, which is described by the reaction; [nu] + (Z, N) 2![nu] + (Z, N), where [nu] is the scattering neutrino, and (Z, N) is the target nucleus of atomic number Z and neutron number N. Its detection would validate central tenets of the Standard Model. We have built a gas-phase argon ionization detector to determine the feasibility of measuring the small recoil energies (H"1keV) predicted from coherent neutrino scattering, and to characterize the recoil spectrum of the argon nuclei induced by scattering from medium-energy neutrons. We present calibrations made with 55-Fe, a low-energy X-ray source, and report on measurements to date of the recoil spectra from the 2-MeV LINAC Li-target neutron source at LLNL. A high signal-to-noise measurement of the recoil spectrum will not only serve as an important milestone in achieving the sensitivity necessary for measuring coherent neutrino-nucleus scattering, but will break new scientific ground on its own.


Low Temperature Detectors for Neutrinos and Dark Matter

Low Temperature Detectors for Neutrinos and Dark Matter

Author: Klaus Pretzl

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 169

ISBN-13: 3642729592

DOWNLOAD EBOOK

For the last few years astrophysicists and elementary particle physicists have been working jointly on the following fascinating phenomena: 1. The solar neutrino puzzle and the question: What happens to the neutrinos on their way from the sun to the earth? 2. The growing evidence that our universe is filled with about 10 times more matter than is visible and the question: What is dark matter made of? 3. The supernovae explosions and the question: What do neutrinos tell us about such explosions and vice versa? The experimental investigation of these phenomena is difficult and involves unconventional techniques. These are presently under development, and bring together such seemingly disparate disciplines as astrophysics and elementary particle physics on the one hand and superconductivity and solid-state physics on the other. This book contains the proceedings of a workshop held in March 1987 at which the above subjects and their experimental investigation were discussed. The proposed experimental methods are very new. They involve frontier developments in low temperature and solid-state physics. The book should be useful to researchers and students who actively work on these subjects or plan to enter the field. It also offers the non-expert reader with some physics background a good survey of the activities in this field.


Development of New Cryogenic Low-threshold Detectors for the Search of Light Dark Matter and Low-energy Neutrino Physics

Development of New Cryogenic Low-threshold Detectors for the Search of Light Dark Matter and Low-energy Neutrino Physics

Author: Dimitri Misiak

Publisher:

Published: 2021

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

The Coherent Elastic Neutrino-Nucleus Scattering (CENNS) is a process predicted nearly 40 years ago. In August 2017, the COHERENT experiment reported the first keV-scale detection at the 6.7 sigma level of this process, which is a probe for the new low energy physics, opening a window on a myriad of new physics opportunities. The RICOCHET experiment aims at measuring with high accuracy the CENNS process in order to probe various exotic physics scenarios in the electroweak sector. Using cryogenic bolometers operated in a cryostat 8 meters away from the core of the ILL research nuclear reactor, the experiment will benefit from an intense neutrino flux, allowing the results of COHERENT to be reproduced in a single week. The objective of an accurate measurement will be achieved after one year of data collection, by 2024. The CRYOCUBE is a compact cubic array of cryogenic detectors with the following specifications: a very low energy threshold of O(10) eV on the thermal signal, an electromagnetic background rejection of at least 10^3 and a total target mass of 1 kg distributed among 27 germanium crystals of about 30 g each. The objective of this thesis is to propose an optimized detector design for the CRYOCUBE, inspired by the cryogenic germanium detectors equipped with charge and temperature readings of the direct dark matter search experiment EDELWEISS. This joint R&D program is based on event discrimination realized in germanium semiconductor crystals. The recoil energy of an incident particle is derived either from the increase of the crystal temperature measured by a GeNTD thermistor (heat channel) or from the excited electric charges collected by electrodes on its surface (ionization channel). This double energy measurement makes it possible to distinguish the nuclear recoils produced by the CENNS or the dark matter from the electronic radioactive background. As these recoils are of the order of O(100) eV, this thesis work is focused on the development of a new generation of cryogenic low threshold germanium detectors with particle identification. It explores how to improve the resolution in heat and ionization energy up to O(10) eV while maintaining a good rejection of background events. This study is based on the testing of prototype detectors in the IP2I cryostat, which are compared to theoretical predictions from electro-thermal and electrostatic modeling of the detectors. This manuscript begins with the definition of the CENNS process, its scientific importance and the objectives of the RICOCHET experiment. It then presents the cryogenic installation allowing the surface operation of the detectors at 20 mK in optimal conditions. An electro-thermal model of the bolometers, compared with experimental data, is developed and applied to the simulation of the noise associated with the electronics of the heat signal. The thesis then formalizes the generation of the ionization signals arising from excited charge carriers drifting in the germanium crystal under the influence of the applied electric field. The expected resolution from a future low-noise electronics is modeled based on two detector designs. They are optimized by their electrostatic simulation in a finite element calculation software. A comparison of the theoretical and experimental performance of ionization is performed on the basis of the RED80 and REDN1 prototype detectors. This work ends with the characterization of the radioactive background in the cryogenic laboratory with the analysis of the data from RED80, and in particular its neutron component, used to estimate the expected background at the ILL site for RICOCHET.


Neutrino Physics

Neutrino Physics

Author: Klaus Winter

Publisher: Cambridge University Press

Published: 2000-09-21

Total Pages: 606

ISBN-13: 9780521650038

DOWNLOAD EBOOK

A revised overview of modern neutrino physics, covering all major areas of interest.


First Observation of Coherent Elastic Neutrino-Nucleus Scattering

First Observation of Coherent Elastic Neutrino-Nucleus Scattering

Author: Bjorn Scholz

Publisher: Springer

Published: 2018-10-26

Total Pages: 153

ISBN-13: 3319997475

DOWNLOAD EBOOK

This thesis describes the experimental work that finally led to a successful measurement of coherent elastic neutrino-nucleus scattering—a process proposed forty-three years ago. The experiment was performed at the Spallation Neutron Source facility, sited at Oak Ridge National Laboratory, in Tennessee. Of all known particles, neutrinos distinguish themselves for being the hardest to detect, typically requiring large multi-ton devices for the job. The process measured here involves the difficult detection of very weak signals arising from nuclear recoils (tiny neutrino-induced “kicks” to atomic nuclei), but leads to a much larger probability of neutrino interaction when compared to all other known mechanisms. As a result of this, “neutrino technologies” using miniaturized detectors (the author's was handheld and weighed only 14 kg) become a possibility. A large community of researchers plans to continue studying this process, facilitating an exploration of fundamental neutrino properties that is presently beyond the sensitivity of other methods.


Particle Physics Reference Library

Particle Physics Reference Library

Author: Christian W. Fabjan

Publisher: Springer Nature

Published: 2020

Total Pages: 1083

ISBN-13: 3030353184

DOWNLOAD EBOOK

This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access