Factorization Algebras in Quantum Field Theory: Volume 2

Factorization Algebras in Quantum Field Theory: Volume 2

Author: Kevin Costello

Publisher: Cambridge University Press

Published: 2021-09-23

Total Pages: 418

ISBN-13: 1316730182

DOWNLOAD EBOOK

Factorization algebras are local-to-global objects that play a role in classical and quantum field theory that is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this second volume, the authors show how factorization algebras arise from interacting field theories, both classical and quantum, and how they encode essential information such as operator product expansions, Noether currents, and anomalies. Along with a systematic reworking of the Batalin–Vilkovisky formalism via derived geometry and factorization algebras, this book offers concrete examples from physics, ranging from angular momentum and Virasoro symmetries to a five-dimensional gauge theory.


Factorization Algebras in Quantum Field Theory: Volume 1

Factorization Algebras in Quantum Field Theory: Volume 1

Author: Kevin Costello

Publisher: Cambridge University Press

Published: 2016-12-15

Total Pages: 399

ISBN-13: 1316737888

DOWNLOAD EBOOK

Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.


Factorization Algebras in Quantum Field Theory

Factorization Algebras in Quantum Field Theory

Author: Kevin Costello

Publisher: Cambridge University Press

Published: 2017

Total Pages: 399

ISBN-13: 1107163102

DOWNLOAD EBOOK

This first volume develops factorization algebras with a focus upon examples exhibiting their use in field theory, which will be useful for researchers and graduates.


Factorization Algebras in Quantum Field Theory: Volume 1

Factorization Algebras in Quantum Field Theory: Volume 1

Author: Kevin Costello

Publisher: Cambridge University Press

Published: 2016-12-15

Total Pages: 398

ISBN-13: 9781107163102

DOWNLOAD EBOOK

Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.


Topology and Quantum Theory in Interaction

Topology and Quantum Theory in Interaction

Author: David Ayala

Publisher: American Mathematical Soc.

Published: 2018-10-25

Total Pages: 274

ISBN-13: 1470442434

DOWNLOAD EBOOK

This volume contains the proceedings of the NSF-CBMS Regional Conference on Topological and Geometric Methods in QFT, held from July 31–August 4, 2017, at Montana State University in Bozeman, Montana. In recent decades, there has been a movement to axiomatize quantum field theory into a mathematical structure. In a different direction, one can ask to test these axiom systems against physics. Can they be used to rederive known facts about quantum theories or, better yet, be the framework in which to solve open problems? Recently, Freed and Hopkins have provided a solution to a classification problem in condensed matter theory, which is ultimately based on the field theory axioms of Graeme Segal. Papers contained in this volume amplify various aspects of the Freed–Hopkins program, develop some category theory, which lies behind the cobordism hypothesis, the major structure theorem for topological field theories, and relate to Costello's approach to perturbative quantum field theory. Two papers on the latter use this framework to recover fundamental results about some physical theories: two-dimensional sigma-models and the bosonic string. Perhaps it is surprising that such sparse axiom systems encode enough structure to prove important results in physics. These successes can be taken as encouragement that the axiom systems are at least on the right track toward articulating what a quantum field theory is.


Mathematical Aspects of Quantum Field Theories

Mathematical Aspects of Quantum Field Theories

Author: Damien Calaque

Publisher: Springer

Published: 2015-01-06

Total Pages: 572

ISBN-13: 3319099493

DOWNLOAD EBOOK

Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homology and factorization algebras.


New Spaces in Physics: Volume 2

New Spaces in Physics: Volume 2

Author: Mathieu Anel

Publisher: Cambridge University Press

Published: 2021-04-01

Total Pages: 438

ISBN-13: 1108848206

DOWNLOAD EBOOK

After the development of manifolds and algebraic varieties in the previous century, mathematicians and physicists have continued to advance concepts of space. This book and its companion explore various new notions of space, including both formal and conceptual points of view, as presented by leading experts at the New Spaces in Mathematics and Physics workshop held at the Institut Henri Poincaré in 2015. This volume covers a broad range of topics in mathematical physics, including noncommutative geometry, supergeometry, derived symplectic geometry, higher geometric quantization, intuitionistic quantum logic, problems with the continuum description of spacetime, twistor theory, loop quantum gravity, and geometry in string theory. It is addressed primarily to mathematical physicists and mathematicians, but also to historians and philosophers of these disciplines.


Lectures on Factorization Homology, ∞-Categories, and Topological Field Theories

Lectures on Factorization Homology, ∞-Categories, and Topological Field Theories

Author: Hiro Lee Tanaka

Publisher: Springer Nature

Published: 2020-12-14

Total Pages: 84

ISBN-13: 3030611639

DOWNLOAD EBOOK

This book provides an informal and geodesic introduction to factorization homology, focusing on providing intuition through simple examples. Along the way, the reader is also introduced to modern ideas in homotopy theory and category theory, particularly as it relates to the use of infinity-categories. As with the original lectures, the text is meant to be a leisurely read suitable for advanced graduate students and interested researchers in topology and adjacent fields.


Form Factors In Completely Integrable Models Of Quantum Field Theory

Form Factors In Completely Integrable Models Of Quantum Field Theory

Author: F A Smirnov

Publisher: World Scientific

Published: 1992-08-07

Total Pages: 224

ISBN-13: 9814506907

DOWNLOAD EBOOK

The monograph summarizes recent achievements in the calculation of matrix elements of local operators (form factors) for completely integrable models. Particularly, it deals with sine-Gordon, chiral Gross-Neven and O(3) nonlinear s models. General requirements on form factors are formulated and explicit formulas for form factors of most fundamental local operators are presented for the above mentioned models.


Chern-Simons Theory and Equivariant Factorization Algebras

Chern-Simons Theory and Equivariant Factorization Algebras

Author: Corina Keller

Publisher: Springer

Published: 2019-01-25

Total Pages: 157

ISBN-13: 365825338X

DOWNLOAD EBOOK

Corina Keller studies non-perturbative facets of abelian Chern-Simons theories. This is a refinement of the entirely perturbative approach to classical Chern-Simons theory via homotopy factorization algebras of observables that arise from the associated formal moduli problem describing deformations of flat principal bundles with connections over the spacetime manifold. The author shows that for theories with abelian group structure, this factorization algebra of classical observables comes naturally equipped with an action of the gauge group, which allows to encode non-perturbative effects in the classical observables. About the Author: Corina Keller currently is a doctoral student in the research group of Prof. Dr. Damien Calaque at the Université Montpellier, France. She is mostly interested in the mathematical study of field theories. Her master’s thesis was supervised by PD Dr. Alessandro Valentino and Prof. Dr. Alberto Cattaneo at Zurich University, Switzerland.