Faber Systems and Their Use in Sampling, Discrepancy, Numerical Integration

Faber Systems and Their Use in Sampling, Discrepancy, Numerical Integration

Author: Hans Triebel

Publisher: European Mathematical Society

Published: 2012

Total Pages: 120

ISBN-13: 9783037191071

DOWNLOAD EBOOK

This book deals first with Haar bases, Faber bases and Faber frames for weighted function spaces on the real line and the plane. It extends results in the author's book, ``Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration'' (EMS, 2010), from unweighted spaces (preferably in cubes) to weighted spaces. The obtained assertions are used to study sampling and numerical integration in weighted spaces on the real line and weighted spaces with dominating mixed smoothness in the plane. A short chapter deals with the discrepancy for spaces on intervals.


Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration

Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration

Author: Hans Triebel

Publisher: European Mathematical Society

Published: 2010

Total Pages: 314

ISBN-13: 9783037190852

DOWNLOAD EBOOK

The first chapters of this book deal with Haar bases, Faber bases and some spline bases for function spaces in Euclidean $n$-space and $n$-cubes. These are used in the subsequent chapters to study sampling and numerical integration preferably in spaces with dominating mixed smoothness. The subject of the last chapter is the symbiotic relationship between numerical integration and discrepancy, measuring the deviation of sets of points from uniformity. This book is addressed to graduate students and mathematicians who have a working knowledge of basic elements of function spaces and approximation theory and who are interested in the subtle interplay between function spaces, complexity theory and number theory (discrepancy).


Hyperbolic Cross Approximation

Hyperbolic Cross Approximation

Author: Dinh Dũng

Publisher: Springer

Published: 2018-11-02

Total Pages: 222

ISBN-13: 3319922408

DOWNLOAD EBOOK

This book provides a systematic survey of classical and recent results on hyperbolic cross approximation. Motivated by numerous applications, the last two decades have seen great success in studying multivariate approximation. Multivariate problems have proven to be considerably more difficult than their univariate counterparts, and recent findings have established that multivariate mixed smoothness classes play a fundamental role in high-dimensional approximation. The book presents essential findings on and discussions of linear and nonlinear approximations of the mixed smoothness classes. Many of the important open problems explored here will provide both students and professionals with inspirations for further research.


Theory of Besov Spaces

Theory of Besov Spaces

Author: Yoshihiro Sawano

Publisher: Springer

Published: 2018-11-04

Total Pages: 964

ISBN-13: 9811308365

DOWNLOAD EBOOK

This is a self-contained textbook of the theory of Besov spaces and Triebel–Lizorkin spaces oriented toward applications to partial differential equations and problems of harmonic analysis. These include a priori estimates of elliptic differential equations, the T1 theorem, pseudo-differential operators, the generator of semi-group and spaces on domains, and the Kato problem. Various function spaces are introduced to overcome the shortcomings of Besov spaces and Triebel–Lizorkin spaces as well. The only prior knowledge required of readers is familiarity with integration theory and some elementary functional analysis.Illustrations are included to show the complicated way in which spaces are defined. Owing to that complexity, many definitions are required. The necessary terminology is provided at the outset, and the theory of distributions, L^p spaces, the Hardy–Littlewood maximal operator, and the singular integral operators are called upon. One of the highlights is that the proof of the Sobolev embedding theorem is extremely simple. There are two types for each function space: a homogeneous one and an inhomogeneous one. The theory of function spaces, which readers usually learn in a standard course, can be readily applied to the inhomogeneous one. However, that theory is not sufficient for a homogeneous space; it needs to be reinforced with some knowledge of the theory of distributions. This topic, however subtle, is also covered within this volume. Additionally, related function spaces—Hardy spaces, bounded mean oscillation spaces, and Hölder continuous spaces—are defined and discussed, and it is shown that they are special cases of Besov spaces and Triebel–Lizorkin spaces.


A Course on Elation Quadrangles

A Course on Elation Quadrangles

Author: Koen Thas

Publisher: European Mathematical Society

Published: 2012

Total Pages: 136

ISBN-13: 9783037191101

DOWNLOAD EBOOK

The notion of elation generalized quadrangle is a natural generalization to the theory of generalized quadrangles of the important notion of translation planes in the theory of projective planes. Almost any known class of finite generalized quadrangles can be constructed from a suitable class of elation quadrangles. In this book the author considers several aspects of the theory of elation generalized quadrangles. Special attention is given to local Moufang conditions on the foundational level, exploring, for instance, Knarr's question from the 1990s concerning the very notion of elation quadrangles. All the known results on Kantor's prime power conjecture for finite elation quadrangles are gathered, some of them published here for the first time. The structural theory of elation quadrangles and their groups is heavily emphasized. Other related topics, such as $p$-modular cohomology, Heisenberg groups, and existence problems for certain translation nets, are briefly touched. This book starts from scratch and is essentially self-contained. Many alternative proofs are given for known theorems. This course contains dozens of exercises at various levels, from very easy to rather difficult, and will stimulate undergraduate and graduate students to enter the fascinating and rich world of elation quadrangles. More accomplished mathematicians will find the final chapters especially challenging.


Faber Systems and Their Use in Sampling, Discrepancy, Numerical Integration

Faber Systems and Their Use in Sampling, Discrepancy, Numerical Integration

Author: Hans Triebel

Publisher:

Published:

Total Pages: 106

ISBN-13: 9783037196076

DOWNLOAD EBOOK

This book deals first with Haar bases, Faber bases and Faber frames for weighted function spaces on the real line and the plane. It extends results in the author's book Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration (EMS, 2010) from unweighted spaces (preferably in cubes) to weighted spaces. The obtained assertions are used to study sampling and numerical integration in weighted spaces on the real line and weighted spaces with dominating mixed smoothness in the plane. A short chapter deals with the discrepancy for spaces on intervals. The book is addressed to graduate students and mathematicians having a working knowledge of basic elements of function spaces and approximation theory.


Theory of Function Spaces IV

Theory of Function Spaces IV

Author: Hans Triebel

Publisher: Springer Nature

Published: 2020-01-23

Total Pages: 167

ISBN-13: 3030358917

DOWNLOAD EBOOK

This book is the continuation of the "Theory of Function Spaces" trilogy, published by the same author in this series and now part of classic literature in the area of function spaces. It can be regarded as a supplement to these volumes and as an accompanying book to the textbook by D.D. Haroske and the author "Distributions, Sobolev spaces, elliptic equations".


Street-Fighting Mathematics

Street-Fighting Mathematics

Author: Sanjoy Mahajan

Publisher: MIT Press

Published: 2010-03-05

Total Pages: 152

ISBN-13: 0262265591

DOWNLOAD EBOOK

An antidote to mathematical rigor mortis, teaching how to guess answers without needing a proof or an exact calculation. In problem solving, as in street fighting, rules are for fools: do whatever works—don't just stand there! Yet we often fear an unjustified leap even though it may land us on a correct result. Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation. In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge—from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool—the general principle—from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems. Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.


Function Spaces with Dominating Mixed Smoothness

Function Spaces with Dominating Mixed Smoothness

Author: Hans Triebel

Publisher:

Published: 2019

Total Pages: 210

ISBN-13: 9783037196953

DOWNLOAD EBOOK

The first part of this book is devoted to function spaces in Euclidean $n$-space with dominating mixed smoothness. Some new properties are derived and applied in the second part where weighted spaces with dominating mixed smoothness in arbitrary bounded domains in Euclidean $n$-space are introduced and studied. This includes wavelet frames, numerical integration and discrepancy, measuring the deviation of sets of points from uniformity. These notes are addressed to graduate students and mathematicians having a working knowledge of basic elements of the theory of function spaces, especially of Besov-Sobolev type. In particular, it will be of interest for researchers dealing with approximation theory, numerical integration and discrepancy.