Extrapolation and Rational Approximation

Extrapolation and Rational Approximation

Author: Claude Brezinski

Publisher: Springer Nature

Published: 2020-11-30

Total Pages: 410

ISBN-13: 3030584186

DOWNLOAD EBOOK

This book paints a fresco of the field of extrapolation and rational approximation over the last several centuries to the present through the works of their primary contributors. It can serve as an introduction to the topics covered, including extrapolation methods, Padé approximation, orthogonal polynomials, continued fractions, Lanczos-type methods etc.; it also provides in depth discussion of the many links between these subjects. A highlight of this book is the presentation of the human side of the fields discussed via personal testimonies from contemporary researchers, their anecdotes, and their exclusive remembrances of some of the “actors.” This book shows how research in this domain started and evolved. Biographies of other scholars encountered have also been included. An important branch of mathematics is described in its historical context, opening the way to new developments. After a mathematical introduction, the book contains a precise description of the mathematical landscape of these fields spanning from the 19th century to the first part of the 20th. After an analysis of the works produced after that period (in particular those of Richardson, Aitken, Shanks, Wynn, and others), the most recent developments and applications are reviewed.


Nonlinear Numerical Methods and Rational Approximation II

Nonlinear Numerical Methods and Rational Approximation II

Author: A. Cuyt

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 443

ISBN-13: 9401109702

DOWNLOAD EBOOK

These are the proceedings of the international conference on "Nonlinear numerical methods and Rational approximation II" organised by Annie Cuyt at the University of Antwerp (Belgium), 05-11 September 1993. It was held for the third time in Antwerp at the conference center of UIA, after successful meetings in 1979 and 1987 and an almost yearly tradition since the early 70's. The following figures illustrate the growing number of participants and their geographical dissemination. In 1993 the Belgian scientific committee consisted of A. Bultheel (Leuven), A. Cuyt (Antwerp), J. Meinguet (Louvain-Ia-Neuve) and J.-P. Thiran (Namur). The conference focused on the use of rational functions in different fields of Numer ical Analysis. The invited speakers discussed "Orthogonal polynomials" (D. S. Lu binsky), "Rational interpolation" (M. Gutknecht), "Rational approximation" (E. B. Saff) , "Pade approximation" (A. Gonchar) and "Continued fractions" (W. B. Jones). In contributed talks multivariate and multidimensional problems, applications and implementations of each main topic were considered. To each of the five main topics a separate conference day was devoted and a separate proceedings chapter compiled accordingly. In this way the proceedings reflect the organisation of the talks at the conference. Nonlinear numerical methods and rational approximation may be a nar row field for the outside world, but it provides a vast playground for the chosen ones. It can fascinate specialists from Moscow to South-Africa, from Boulder in Colorado and from sunny Florida to Zurich in Switzerland.


Approximation Theory and Approximation Practice, Extended Edition

Approximation Theory and Approximation Practice, Extended Edition

Author: Lloyd N. Trefethen

Publisher: SIAM

Published: 2019-01-01

Total Pages: 377

ISBN-13: 1611975948

DOWNLOAD EBOOK

This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the field’s most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.


Extrapolation Methods

Extrapolation Methods

Author: C. Brezinski

Publisher: Elsevier

Published: 2013-10-24

Total Pages: 475

ISBN-13: 0080506224

DOWNLOAD EBOOK

This volume is a self-contained, exhaustive exposition of the extrapolation methods theory, and of the various algorithms and procedures for accelerating the convergence of scalar and vector sequences. Many subroutines (written in FORTRAN 77) with instructions for their use are provided on a floppy disk in order to demonstrate to those working with sequences the advantages of the use of extrapolation methods. Many numerical examples showing the effectiveness of the procedures and a consequent chapter on applications are also provided – including some never before published results and applications. Although intended for researchers in the field, and for those using extrapolation methods for solving particular problems, this volume also provides a valuable resource for graduate courses on the subject.


Nonlinear Methods in Numerical Analysis

Nonlinear Methods in Numerical Analysis

Author: A. Cuyt

Publisher: Elsevier

Published: 1987-03-01

Total Pages: 289

ISBN-13: 0080872476

DOWNLOAD EBOOK

While most textbooks on Numerical Analysis discuss linear techniques for the solution of various numerical problems, this book introduces and illustrates nonlinear methods. It presents several nonlinear techniques resulting mainly from the use of Padé approximants and rational interpolants.


Orthogonal Polynomials on the Unit Circle: Spectral theory

Orthogonal Polynomials on the Unit Circle: Spectral theory

Author: Barry Simon

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 608

ISBN-13: 9780821836750

DOWNLOAD EBOOK

Presents an overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. This book discusses topics such as asymptotics of Toeplitz determinants (Szego's theorems), and limit theorems for the density of the zeros of orthogonal polynomials.


Using R for Numerical Analysis in Science and Engineering

Using R for Numerical Analysis in Science and Engineering

Author: Victor A. Bloomfield

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 362

ISBN-13: 1315360497

DOWNLOAD EBOOK

Instead of presenting the standard theoretical treatments that underlie the various numerical methods used by scientists and engineers, Using R for Numerical Analysis in Science and Engineering shows how to use R and its add-on packages to obtain numerical solutions to the complex mathematical problems commonly faced by scientists and engineers. This practical guide to the capabilities of R demonstrates Monte Carlo, stochastic, deterministic, and other numerical methods through an abundance of worked examples and code, covering the solution of systems of linear algebraic equations and nonlinear equations as well as ordinary differential equations and partial differential equations. It not only shows how to use R’s powerful graphic tools to construct the types of plots most useful in scientific and engineering work, but also: Explains how to statistically analyze and fit data to linear and nonlinear models Explores numerical differentiation, integration, and optimization Describes how to find eigenvalues and eigenfunctions Discusses interpolation and curve fitting Considers the analysis of time series Using R for Numerical Analysis in Science and Engineering provides a solid introduction to the most useful numerical methods for scientific and engineering data analysis using R.