This book is aimed at gifted and talented students in year 7, although it can also be used in the primary curriculum for highly able year 6 students. It consists of tightly focused sets of problems, with each set devoted to core ideas from the Framework but approached in a way that cultivatesmore profound mathematical thinking. The book is structured into a number of sections, which comes in three varieties: tasters, core, and extensions, thus recognising differentiation within the gifted spectrum. The materials can be used within ordinary lessons for top sets.
Teaching Mathematics is nothing less than a mathematical manifesto. Arising in response to a limited National Curriculum, and engaged with secondary schooling for those aged 11 ̶ 14 (Key Stage 3) in particular, this handbook for teachers will help them broaden and enrich their students’ mathematical education. It avoids specifying how to teach, and focuses instead on the central principles and concepts that need to be borne in mind by all teachers and textbook authors—but which are little appreciated in the UK at present.This study is aimed at anyone who would like to think more deeply about the discipline of ‘elementary mathematics’, in England and Wales and anywhere else. By analysing and supplementing the current curriculum, Teaching Mathematics provides food for thought for all those involved in school mathematics, whether as aspiring teachers or as experienced professionals. It challenges us all to reflect upon what it is that makes secondary school mathematics educationally, culturally, and socially important.
This brief monograph on the gamma function was designed by the author to fill what he perceived as a gap in the literature of mathematics, which often treated the gamma function in a manner he described as both sketchy and overly complicated. Author Emil Artin, one of the twentieth century's leading mathematicians, wrote in his Preface to this book, "I feel that this monograph will help to show that the gamma function can be thought of as one of the elementary functions, and that all of its basic properties can be established using elementary methods of the calculus." Generations of teachers and students have benefitted from Artin's masterly arguments and precise results. Suitable for advanced undergraduates and graduate students of mathematics, his treatment examines functions, the Euler integrals and the Gauss formula, large values of x and the multiplication formula, the connection with sin x, applications to definite integrals, and other subjects.
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
The International Congress on Mathematical Physics is the flagship conference in this exciting field. Convening every three years, it gives a survey on the progress achieved in all branches of mathematical physics. It also provides a superb platform to discuss challenges and new ideas. The present volume collects material from the XVIth ICMP which was held in Prague, August 2009, and features most of the plenary lectures and invited lectures in topical sessions as well as information on other parts of the congress program. This volume provides a broad coverage of the field of mathematical physics, from dominantly mathematical subjects to particle physics, condensed matter, and application of mathematical physics methods in various areas such as astrophysics and ecology, amongst others.
This book grew. out of lectures given at the University of Maryland in 1979/1980. The purpose was to give a treatment of p-adic L-functions and cyclotomic fields, including Iwasawa's theory of Zp-extensions, which was accessible to mathematicians of varying backgrounds. The reader is assumed to have had at least one semester of algebraic number theory (though one of my students took such a course concurrently). In particular, the following terms should be familiar: Dedekind domain, class number, discriminant, units, ramification, local field. Occasionally one needs the fact that ramification can be computed locally. However, one who has a good background in algebra should be able to survive by talking to the local algebraic number theorist. I have not assumed class field theory; the basic facts are summarized in an appendix. For most of the book, one only needs the fact that the Galois group of the maximal unramified abelian extension is isomorphic to the ideal class group, and variants of this statement. The chapters are intended to be read consecutively, but it should be possible to vary the order considerably. The first four chapters are basic. After that, the reader willing to believe occasional facts could probably read the remaining chapters randomly. For example, the reader might skip directly to Chapter 13 to learn about Zp-extensions. The last chapter, on the Kronecker-Weber theorem, can be read after Chapter 2.
This book acquaints readers with recent developments in dynamical systems theory and its applications, with a strong focus on the control and estimation of nonlinear systems. Several algorithms are proposed and worked out for a set of model systems, in particular so-called input-affine or bilinear systems, which can serve to approximate a wide class of nonlinear control systems. These can either take the form of state space models or be represented by an input-output equation. The approach taken here further highlights the role of modern mathematical and conceptual tools, including differential algebraic theory, observer design for nonlinear systems and generalized canonical forms.
This book is the outcome of the CIMPA School on Statistical Methods and Applications in Insurance and Finance, held in Marrakech and Kelaat M'gouna (Morocco) in April 2013. It presents two lectures and seven refereed papers from the school, offering the reader important insights into key topics. The first of the lectures, by Frederic Viens, addresses risk management via hedging in discrete and continuous time, while the second, by Boualem Djehiche, reviews statistical estimation methods applied to life and disability insurance. The refereed papers offer diverse perspectives and extensive discussions on subjects including optimal control, financial modeling using stochastic differential equations, pricing and hedging of financial derivatives, and sensitivity analysis. Each chapter of the volume includes a comprehensive bibliography to promote further research.