Exploring ODEs

Exploring ODEs

Author: Lloyd N. Trefethen

Publisher: SIAM

Published: 2017-12-21

Total Pages: 343

ISBN-13: 1611975166

DOWNLOAD EBOOK

Exploring ODEs is a textbook of ordinary differential equations for advanced undergraduates, graduate students, scientists, and engineers. It is unlike other books in this field in that each concept is illustrated numerically via a few lines of Chebfun code. There are about 400 computer-generated figures in all, and Appendix B presents 100 more examples as templates for further exploration.?


Revolutions in Differential Equations

Revolutions in Differential Equations

Author: M. J. Kallaher

Publisher: Cambridge University Press

Published: 1999-11-11

Total Pages: 108

ISBN-13: 9780883851609

DOWNLOAD EBOOK

Discusses the direction in which the field of differential equations, and its teaching, is going.


Differential Equations

Differential Equations

Author: H. S. Bear

Publisher: Courier Corporation

Published: 2013-10-30

Total Pages: 226

ISBN-13: 0486143643

DOWNLOAD EBOOK

First-rate introduction for undergraduates examines first order equations, complex-valued solutions, linear differential operators, the Laplace transform, Picard's existence theorem, and much more. Includes problems and solutions.


Ordinary Differential Equations

Ordinary Differential Equations

Author: Morris Tenenbaum

Publisher: Courier Corporation

Published: 1985-10-01

Total Pages: 852

ISBN-13: 0486649407

DOWNLOAD EBOOK

Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.


Approximation Theory and Approximation Practice, Extended Edition

Approximation Theory and Approximation Practice, Extended Edition

Author: Lloyd N. Trefethen

Publisher: SIAM

Published: 2019-01-01

Total Pages: 377

ISBN-13: 1611975948

DOWNLOAD EBOOK

This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the field’s most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.


Evolutionary Dynamics

Evolutionary Dynamics

Author: Martin A. Nowak

Publisher: Harvard University Press

Published: 2006-09-29

Total Pages: 390

ISBN-13: 0674417755

DOWNLOAD EBOOK

At a time of unprecedented expansion in the life sciences, evolution is the one theory that transcends all of biology. Any observation of a living system must ultimately be interpreted in the context of its evolution. Evolutionary change is the consequence of mutation and natural selection, which are two concepts that can be described by mathematical equations. Evolutionary Dynamics is concerned with these equations of life. In this book, Martin A. Nowak draws on the languages of biology and mathematics to outline the mathematical principles according to which life evolves. His work introduces readers to the powerful yet simple laws that govern the evolution of living systems, no matter how complicated they might seem. Evolution has become a mathematical theory, Nowak suggests, and any idea of an evolutionary process or mechanism should be studied in the context of the mathematical equations of evolutionary dynamics. His book presents a range of analytical tools that can be used to this end: fitness landscapes, mutation matrices, genomic sequence space, random drift, quasispecies, replicators, the Prisoner’s Dilemma, games in finite and infinite populations, evolutionary graph theory, games on grids, evolutionary kaleidoscopes, fractals, and spatial chaos. Nowak then shows how evolutionary dynamics applies to critical real-world problems, including the progression of viral diseases such as AIDS, the virulence of infectious agents, the unpredictable mutations that lead to cancer, the evolution of altruism, and even the evolution of human language. His book makes a clear and compelling case for understanding every living system—and everything that arises as a consequence of living systems—in terms of evolutionary dynamics.


Existence Theorems for Ordinary Differential Equations

Existence Theorems for Ordinary Differential Equations

Author: Francis J. Murray

Publisher: Courier Corporation

Published: 2013-11-07

Total Pages: 178

ISBN-13: 0486154955

DOWNLOAD EBOOK

This text examines fundamental and general existence theorems, along with uniqueness theorems and Picard iterants, and applies them to properties of solutions and linear differential equations. 1954 edition.


Student's Solutions Manual to Accompany Differential Equations

Student's Solutions Manual to Accompany Differential Equations

Author: George Finlay Simmons

Publisher: McGraw-Hill Science, Engineering & Mathematics

Published: 2006

Total Pages: 0

ISBN-13: 9780072863161

DOWNLOAD EBOOK

This traditional text is intended for mainstream one- or two-semester differential equations courses taken by undergraduates majoring in engineering, mathematics, and the sciences. Written by two of the world's leading authorities on differential equations, Simmons/Krantz provides a cogent and accessible introduction to ordinary differential equations written in classical style. Its rich variety of modern applications in engineering, physics, and the applied sciences illuminate the concepts and techniques that students will use through practice to solve real-life problems in their careers. This text is part of the Walter Rudin Student Series in Advanced Mathematics.


Ordinary Differential Equations and Dynamical Systems

Ordinary Differential Equations and Dynamical Systems

Author: Gerald Teschl

Publisher: American Mathematical Society

Published: 2024-01-12

Total Pages: 370

ISBN-13: 147047641X

DOWNLOAD EBOOK

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.


Differential Equations, Dynamical Systems, and an Introduction to Chaos

Differential Equations, Dynamical Systems, and an Introduction to Chaos

Author: Morris W. Hirsch

Publisher: Academic Press

Published: 2004

Total Pages: 433

ISBN-13: 0123497035

DOWNLOAD EBOOK

Thirty years in the making, this revised text by three of the world's leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra. The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of.