Explorations in Harmonic Analysis

Explorations in Harmonic Analysis

Author: Steven G. Krantz

Publisher: Springer Science & Business Media

Published: 2009-05-24

Total Pages: 367

ISBN-13: 0817646698

DOWNLOAD EBOOK

This self-contained text provides an introduction to modern harmonic analysis in the context in which it is actually applied, in particular, through complex function theory and partial differential equations. It takes the novice mathematical reader from the rudiments of harmonic analysis (Fourier series) to the Fourier transform, pseudodifferential operators, and finally to Heisenberg analysis.


Explorations in Complex Analysis

Explorations in Complex Analysis

Author: Michael A. Brilleslyper

Publisher: American Mathematical Soc.

Published: 2012-12-31

Total Pages: 393

ISBN-13: 1614441081

DOWNLOAD EBOOK

Research topics in the book include complex dynamics, minimal surfaces, fluid flows, harmonic, conformal, and polygonal mappings, and discrete complex analysis via circle packing. The nature of this book is different from many mathematics texts: the focus is on student-driven and technology-enhanced investigation. Interlaced in the reading for each chapter are examples, exercises, explorations, and projects, nearly all linked explicitly with computer applets for visualization and hands-on manipulation.


Real-Variable Methods in Harmonic Analysis

Real-Variable Methods in Harmonic Analysis

Author: Alberto Torchinsky

Publisher: Elsevier

Published: 2016-06-03

Total Pages: 475

ISBN-13: 1483268888

DOWNLOAD EBOOK

Real-Variable Methods in Harmonic Analysis deals with the unity of several areas in harmonic analysis, with emphasis on real-variable methods. Active areas of research in this field are discussed, from the Calderón-Zygmund theory of singular integral operators to the Muckenhoupt theory of Ap weights and the Burkholder-Gundy theory of good ? inequalities. The Calderón theory of commutators is also considered. Comprised of 17 chapters, this volume begins with an introduction to the pointwise convergence of Fourier series of functions, followed by an analysis of Cesàro summability. The discussion then turns to norm convergence; the basic working principles of harmonic analysis, centered around the Calderón-Zygmund decomposition of locally integrable functions; and fractional integration. Subsequent chapters deal with harmonic and subharmonic functions; oscillation of functions; the Muckenhoupt theory of Ap weights; and elliptic equations in divergence form. The book also explores the essentials of the Calderón-Zygmund theory of singular integral operators; the good ? inequalities of Burkholder-Gundy; the Fefferman-Stein theory of Hardy spaces of several real variables; Carleson measures; and Cauchy integrals on Lipschitz curves. The final chapter presents the solution to the Dirichlet and Neumann problems on C1-domains by means of the layer potential methods. This monograph is intended for graduate students with varied backgrounds and interests, ranging from operator theory to partial differential equations.


Function Theory of Several Complex Variables

Function Theory of Several Complex Variables

Author: Steven George Krantz

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 586

ISBN-13: 0821827243

DOWNLOAD EBOOK

Emphasizing integral formulas, the geometric theory of pseudoconvexity, estimates, partial differential equations, approximation theory, inner functions, invariant metrics, and mapping theory, this title is intended for the student with a background in real and complex variable theory, harmonic analysis, and differential equations.


Introduction to Abstract Harmonic Analysis

Introduction to Abstract Harmonic Analysis

Author: Lynn H. Loomis

Publisher: Courier Corporation

Published: 2011-06-01

Total Pages: 210

ISBN-13: 0486481239

DOWNLOAD EBOOK

"Harmonic analysis is a branch of advanced mathematics with applications in such diverse areas as signal processing, medical imaging, and quantum mechanics. This classic monograph is the work of a prominent contributor to the field. Geared toward advanced undergraduates and graduate students, it focuses on methods related to Gelfand's theory of Banach algebra. 1953 edition"--


Explorations in Time-Frequency Analysis

Explorations in Time-Frequency Analysis

Author: Patrick Flandrin

Publisher: Cambridge University Press

Published: 2018-09-06

Total Pages: 231

ISBN-13: 1108421024

DOWNLOAD EBOOK

Understand the methods of modern non-stationary signal processing with authoritative insights from a leader in the field.


Explorations in Complex Functions

Explorations in Complex Functions

Author: Richard Beals

Publisher: Springer Nature

Published: 2020-10-19

Total Pages: 356

ISBN-13: 3030545334

DOWNLOAD EBOOK

This textbook explores a selection of topics in complex analysis. From core material in the mainstream of complex analysis itself, to tools that are widely used in other areas of mathematics, this versatile compilation offers a selection of many different paths. Readers interested in complex analysis will appreciate the unique combination of topics and connections collected in this book. Beginning with a review of the main tools of complex analysis, harmonic analysis, and functional analysis, the authors go on to present multiple different, self-contained avenues to proceed. Chapters on linear fractional transformations, harmonic functions, and elliptic functions offer pathways to hyperbolic geometry, automorphic functions, and an intuitive introduction to the Schwarzian derivative. The gamma, beta, and zeta functions lead into L-functions, while a chapter on entire functions opens pathways to the Riemann hypothesis and Nevanlinna theory. Cauchy transforms give rise to Hilbert and Fourier transforms, with an emphasis on the connection to complex analysis. Valuable additional topics include Riemann surfaces, steepest descent, tauberian theorems, and the Wiener–Hopf method. Showcasing an array of accessible excursions, Explorations in Complex Functions is an ideal companion for graduate students and researchers in analysis and number theory. Instructors will appreciate the many options for constructing a second course in complex analysis that builds on a first course prerequisite; exercises complement the results throughout.


Hermitian Analysis

Hermitian Analysis

Author: John P. D'Angelo

Publisher: Springer Science & Business Media

Published: 2013-09-24

Total Pages: 211

ISBN-13: 1461485266

DOWNLOAD EBOOK

​​Hermitian Analysis: From Fourier Series to Cauchy-Riemann Geometry provides a coherent, integrated look at various topics from undergraduate analysis. It begins with Fourier series, continues with Hilbert spaces, discusses the Fourier transform on the real line, and then turns to the heart of the book, geometric considerations. This chapter includes complex differential forms, geometric inequalities from one and several complex variables, and includes some of the author's results. The concept of orthogonality weaves the material into a coherent whole. This textbook will be a useful resource for upper-undergraduate students who intend to continue with mathematics, graduate students interested in analysis, and researchers interested in some basic aspects of CR Geometry. The inclusion of several hundred exercises makes this book suitable for a capstone undergraduate Honors class.​


Modern Methods in Operator Theory and Harmonic Analysis

Modern Methods in Operator Theory and Harmonic Analysis

Author: Alexey Karapetyants

Publisher: Springer Nature

Published: 2019-08-28

Total Pages: 474

ISBN-13: 3030267482

DOWNLOAD EBOOK

This proceedings volume gathers selected, peer-reviewed papers from the "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis VIII" (OTHA 2018) conference, which was held in Rostov-on-Don, Russia, in April 2018. The book covers a diverse range of topics in advanced mathematics, including harmonic analysis, functional analysis, operator theory, function theory, differential equations and fractional analysis – all fields that have been intensively developed in recent decades. Direct and inverse problems arising in mathematical physics are studied and new methods for solving them are presented. Complex multiparameter objects that require the involvement of operators with variable parameters and functional spaces, with fractional and even variable exponents, make these approaches all the more relevant. Given its scope, the book will especially benefit researchers with an interest in new trends in harmonic analysis and operator theory, though it will also appeal to graduate students seeking new and intriguing topics for further investigation.