In the sciences, the experimental approach has proved its worth in generating what subsequently requires understanding. Can the emergent field of artistic research be inspired by recent thinking about the history and workings of science?
Experimental Methods and Instrumentation for Chemical Engineers, Second Edition, touches many aspects of engineering practice, research, and statistics. The principles of unit operations, transport phenomena, and plant design constitute the focus of chemical engineering in the latter years of the curricula. Experimental methods and instrumentation is the precursor to these subjects. This resource integrates these concepts with statistics and uncertainty analysis to define what is necessary to measure and to control, how precisely and how often.The completely updated second edition is divided into several themes related to data: metrology, notions of statistics, and design of experiments. The book then covers basic principles of sensing devices, with a brand new chapter covering force and mass, followed by pressure, temperature, flow rate, and physico-chemical properties. It continues with chapters that describe how to measure gas and liquid concentrations, how to characterize solids, and finally a new chapter on spectroscopic techniques such as UV/Vis, IR, XRD, XPS, NMR, and XAS. Throughout the book, the author integrates the concepts of uncertainty, along with a historical context and practical examples.A problem solutions manual is available from the author upon request. - Includes the basics for 1st and 2nd year chemical engineers, providing a foundation for unit operations and transport phenomena - Features many practical examples - Offers exercises for students at the end of each chapter - Includes up-to-date detailed drawings and photos of equipment
This book represents Part 2 of a venture started by distinguished neuroscientists to visualize and advertise the experimentally advantageous preparations of the crustacean nervous system. The advantage is a combination of ease of dissection of key structures and the possibility of repeatedly accessing identified individual cells to measure the detailed response of the system to the experimentally imposed stimulus program. Of course, the neurosciences have to focus their research on the nervous system of mammals and man in order to understand the principles of function and their regulation if malfunctions occur. This is in line with efforts to investigate nervous systems throughout the animal kingdom. The specific potential of the encountered systems for exploratory research into hitherto unexplained functions of the brain may very well be a key to new insights. The simply organized nervous system of crustaceans performs tasks of vital importance imposed on the organism. Hence this system consists of a complete set of neural circuitry open for inspection and measurement by systematic investigation. The first volume, The Crustacean Nervous System, contains exhaustive reports on experimental work from all sectors of neuroscience using crayfish and lobsters. This second volume, Crustacean Experimental Systems in Neurobiology", contains excellent reviews on significant topics in neurobiology. Each section is introduced by short texts written by the section editors of the Crustacean Nervous System. More, prominent authors explain their approach to understanding the brain using a selection of experiments involving visual orientation, neuromuscular systems and identification of principles of neural processing.
This volume brings together recent developments in quasispecies theory extended to variable environments and practical applications in elucidating viral dynamics and treatment designs. In particular, the existence of an error threshold in rugged fitness landscapes has opened the way to a new antiviral strategy termed lethal mutagenesis, which is now under intensive theoretical, experimental and clinical investigation. As such the book explains how an understanding of quasispecies dynamics within infected organisms has increased our knowledge of viral disease events. From a clinical perspective, population dynamics highlights important problems for viral disease control, such as the selection of drug-resistant mutants that often accompanies treatment failures, and suggests means of increasing the effectiveness of antiviral treatments. The book is intended for students and scientists interested in basic and applied aspects of biophysics, chemistry, biology, evolution and medical virology.
This volume is an essential handbook for anyone interested in performing the most accurate spectrophotometric or other optical property of materials measurements. The chapter authors were chosen from the leading experts in their respective fields and provide their wisdom and experience in measurements of reflectance, transmittance, absorptance, emittance, diffuse scattering, color, and fluorescence. The book provides the reader with the theoretical underpinning to the methods, the practical issues encountered in real measurements, and numerous examples of important applications. - Written by the leading international experts from industry, government, and academia - Written as a handbook, with in depth discussion of the topics - Focus on making the most accurate and reproducible measurements - Many practical applications and examples
Experimental Methods in Orthopaedic Biomechanics is the first book in the field that focuses on the practicalities of performing a large variety of in-vitro laboratory experiments. Explanations are thorough, informative, and feature standard lab equipment to enable biomedical engineers to advance from a 'trial and error' approach to an efficient system recommended by experienced leaders. This is an ideal tool for biomedical engineers or biomechanics professors in their teaching, as well as for those studying and carrying out lab assignments and projects in the field. The experienced authors have established a standard that researchers can test against in order to explain the strengths and weaknesses of testing approaches. - Provides step-by-step guidance to help with in-vitro experiments in orthopaedic biomechanics - Presents a DIY manual that is fully equipped with illustrations, practical tips, quiz questions, and much more - Includes input from field experts who combine their real-world experience to provide invaluable insights for all those in the field
Despite the fact that chemical applications of ultrasound are now widely acknowledged, a detailed presentation of inorganic systems covering nano-particles, catalysis, aqueous chemistry of metallic solutions and their redox characteristics, both from a theoretical and experimental perspective has eluded researchers of this field. Theoretical and Experimental Sonochemistry Involving Inorganic Systems fills this gap and presents a concise and thorough review of this fascinating area of Sonochemistry in a single volume.