Laminar-Turbulent Transition

Laminar-Turbulent Transition

Author: D. Arnal

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 706

ISBN-13: 3642841031

DOWNLOAD EBOOK

The subject of laminar-turbulent transition is of considerable practical importance and has a wide range of engineering applications. For this reason, the International Union of Applied Mechanics decided to sponsor a third Symposium on "Laminar-Turbulent Transition", which would be organised by the ONERA Toulouse Research Center and held at "Ecole Nationale Superieure de l'Aeronautique et de l'Espace" in 1989. It was supposed that like the two previous IUTAM Symposia (Stuttgart 1979 and Novosibirsk 1984) the symposium would be devoted to experimental of laminar-turbulent transition In fluids, i.e. the and theoretical studies physical problem of transition and mathematical modelling in shear flows. The contributed papers were selected by the Scientific Committee from extended abstracts. The larger number of highly qualified papers submitted for presentation led us to include in the program poster sessions, which could be held during morning, lunch and afternoon breaks, and to take the decision that the symposium should last five days (from Monday 11 to Friday 15 September). An excursion on Wednesday offering a well deserved rest and the occasion of new personal exchanges between the participants seems to have been appreciated by all. The symposium consisted of 8 invited lectures and 62 contributed pa pers presented either on oral or poster sessions.


The Origin of Turbulence in Near-Wall Flows

The Origin of Turbulence in Near-Wall Flows

Author: A.V. Boiko

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 273

ISBN-13: 3662047659

DOWNLOAD EBOOK

The Origin of Species Charles Darwin The origin of turbulence in fluids is a long-standing problem and has been the focus of research for decades due to its great importance in a variety of engineering applications. Furthermore, the study of the origin of turbulence is part of the fundamental physical problem of turbulence description and the philosophical problem of determinism and chaos. At the end of the nineteenth century, Reynolds and Rayleigh conjectured that the reason of the transition of laminar flow to the 'sinuous' state is in stability which results in amplification of wavy disturbances and breakdown of the laminar regime. Heisenberg (1924) was the founder of linear hydrody namic stability theory. The first calculations of boundary layer stability were fulfilled in pioneer works of Tollmien (1929) and Schlichting (1932, 1933). Later Taylor (1936) hypothesized that the transition to turbulence is initi ated by free-stream oscillations inducing local separations near wall. Up to the 1940s, skepticism of the stability theory predominated, in particular due to the experimental results of Dryden (1934, 1936). Only the experiments of Schubauer and Skramstad (1948) revealed the determining role of insta bility waves in the transition. Now it is well established that the transition to turbulence in shear flows at small and moderate levels of environmental disturbances occurs through development of instability waves in the initial laminar flow. In Chapter 1 we start with the fundamentals of stability theory, employing results of the early studies and recent advances.


Fundamentals of Fluid Mechanics

Fundamentals of Fluid Mechanics

Author: Joseph A. Schetz

Publisher: John Wiley & Sons

Published: 1999

Total Pages: 968

ISBN-13: 9780471348566

DOWNLOAD EBOOK

Basic fluid dynamic theory and applications in a single, authoritative reference The growing capabilities of computational fluid dynamics and the development of laser velocimeters and other new instrumentation have made a thorough understanding of classic fluid theory and laws more critical today than ever before. Fundamentals of Fluid Mechanics is a vital repository of essential information on this crucial subject. It brings together the contributions of recognized experts from around the world to cover all of the concepts of classical fluid mechanics-from the basic properties of liquids through thermodynamics, flow theory, and gas dynamics. With answers for the practicing engineer and real-world insights for the student, it includes applications from the mechanical, civil, aerospace, chemical, and other fields. Whether used as a refresher or for first-time learning, Fundamentals of Fluid Mechanics is an important new asset for engineers and students in many different disciplines.


Proceedings

Proceedings

Author: International Council of the Aeronautical Sciences

Publisher:

Published: 1986

Total Pages: 812

ISBN-13:

DOWNLOAD EBOOK