Experimental Plan and Irradiation Target Design for FeCrAl Embrittlement Screening Tests Conducted Using the High Flux Isotope Reactor

Experimental Plan and Irradiation Target Design for FeCrAl Embrittlement Screening Tests Conducted Using the High Flux Isotope Reactor

Author:

Publisher:

Published: 2015

Total Pages: 46

ISBN-13:

DOWNLOAD EBOOK

The objective of the FeCrAl embrittlement screening tests being conducted through the use of Oak Ridge National Laboratories (ORNL) High Flux Isotope Reactor is to provide data on the radiation-induced changes in the mechanical properties including radiation-induced hardening and embrittlement through systematic testing and analysis. Data developed on the mechanical properties will be supported by extensive microstructural evaluations to assist in the development of structure-property relationships and provide a sound, fundamental understanding of the performance of FeCrAl alloys in intense neutron radiation fields. Data and analysis developed as part of this effort will be used to assist in the determination of FeCrAl alloys as a viable material for commercial light water reactor (LWR) applications with a primary focus as an accident tolerant cladding.


Irradiation Research Capabilities at HFIR (High Flux Isotope Reactor) and ANS (Advanced Neutron Source).

Irradiation Research Capabilities at HFIR (High Flux Isotope Reactor) and ANS (Advanced Neutron Source).

Author:

Publisher:

Published: 1990

Total Pages: 29

ISBN-13:

DOWNLOAD EBOOK

A variety of materials irradiation facilities exist in the High Flux Isotope Reactor (HFIR) and are planned for the Advanced Neutron Source (ANS) reactor. In 1986 the HFIR Irradiation Facilities Improvement (HIFI) project began modifications to the HFIR which now permit the operation of two instrumented capsules in the target region and eight capsules of 46-mm OD in the RB region. Thus, it is now possible to perform instrumented irradiation experiments in the highest continuous flux of thermal neutrons available in the western world. The new RB facilities are now large enough to permit neutron spectral tailoring of experiments and the modified method of access to these facilities permit rotation of experiments thereby reducing fluence gradients in specimens. A summary of characteristics of irradiation facilities in HFIR is presented. The ANS is being designed to provide the highest thermal neutron flux for beam facilities in the world. Additional design goals include providing materials irradiation and transplutonium isotope production facilities as good, or better than, HFIR. The reference conceptual core design consists of two annular fuel elements positioned one above the other instead of concentrically as in the HFIR. A variety of materials irradiation facilities with unprecedented fluxes are being incorporated into the design of the ANS. These will include fast neutron irradiation facilities in the central hole of the upper fuel element, epithermal facilities surrounding the lower fuel element, and thermal facilities in the reflector tank. A summary of characteristics of irradiation facilities presently planned for the ANS is presented. 2 tabs.


Progress Report on the Design of a Varying Temperature Irradiation Experiment for Operation in HFIR.

Progress Report on the Design of a Varying Temperature Irradiation Experiment for Operation in HFIR.

Author:

Publisher:

Published: 1997

Total Pages: 8

ISBN-13:

DOWNLOAD EBOOK

The purpose of this experiment is to determine effects of temperature variation during irradiation on microstructure and mechanical properties of potential fusion reactor structural materials. A varying temperature irradiation experiment is being performed under the framework of the Japan-USA Program of Irradiation Tests for fusion Research (JUPITER) to study the effects of temperature variation on the microstructure and mechanical properties of candidate fusion reactor structural materials. An irradiation capsule has been designed for operation in the High Flux Isotope Reactor at Oak Ridge National Laboratory that will allow four sets of metallurgical test specimens to be irradiated to exposure levels ranging from 5 to 10 dpa. Two sets of specimens will be irradiated at constant temperature of 500°C and 350°C. Matching specimen sets will be irradiated to similar exposure levels, with 10% of the exposure to occur at reduced temperatures of 300°C and 200°C.


Delivery of Completed Irradiation Vehicles and the Quality Assurance Document to the High Flux Isotope Reactor for Irradiation

Delivery of Completed Irradiation Vehicles and the Quality Assurance Document to the High Flux Isotope Reactor for Irradiation

Author:

Publisher:

Published: 2015

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

This report details the initial fabrication and delivery of two Fuel Cycle Research and Development (FCRD) irradiation capsules (ATFSC01 and ATFSC02), with associated quality assurance documentation, to the High Flux Isotope Reactor (HFIR). The capsules and documentation were delivered by September 30, 2015, thus meeting the deadline for milestone M3FT-15OR0202268. These irradiation experiments are testing silicon carbide composite tubes in order to obtain experimental validation of thermo-mechanical models of stress states in SiC cladding irradiated under a prototypic high heat flux. This document contains a copy of the completed capsule fabrication request sheets, which detail all constituent components, pertinent drawings, etc., along with a detailed summary of the capsule assembly process performed by the Thermal Hydraulics and Irradiation Engineering Group (THIEG) in the Reactor and Nuclear Systems Division (RNSD). A complete fabrication package record is maintained by the THIEG and is available upon request.


Design of a Low Enrichment, Enhanced Fast Flux Core for the Massachusetts Institute of Technology Research Reactor

Design of a Low Enrichment, Enhanced Fast Flux Core for the Massachusetts Institute of Technology Research Reactor

Author: Tyler Shawn Ellis

Publisher:

Published: 2008

Total Pages: 127

ISBN-13:

DOWNLOAD EBOOK

(Cont.) This new core fast flux capability is within a factor of 2 to 4 of the much larger national test reactors, the Advanced Test Reactor and the High Flux Isotope Reactor, and hence can allow the MIT research reactor to be more useful for fast irradiation. The work covered both steady state and transient events involving the Fast Flux Trap, using the Monte Carlo N-Particle (MCNP) transport code. It was shown that the power distribution within the Fast Flux Trap pins as well as the plates in the rest of the core will be satisfactory; or in other words, no excessive power peaking will develop. The limits of the Fast Flux Trap lifetime were found to exceed the expected licensing time of the new core. Furthermore, the reactivity implications of metallic coolant leaks, water flooding of the Fast Flux Trap and various possible test materials were all found to be acceptable. The loss of flow following a pump trip event was analyzed using the RELAP5-3D code, and found not to result in excessive temperatures with regards to materials strength and corrosion resistance. While the specific design developed in this dissertation is particular to the MIT research reactor core, the Fast Flux Trap design concept can potentially be applied in other reactor cores so that other thermal spectrum research and test reactor facilities can benefit from this enhanced capability.


The Next Generation Nuclear Plant Graphite Creep Experiment Irradiation in the Advanced Test Reactor

The Next Generation Nuclear Plant Graphite Creep Experiment Irradiation in the Advanced Test Reactor

Author:

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy's lead laboratory for nuclear energy development. The ATR is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will have differing compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of the experiment. The first experiment was inserted in the ATR in August 2009 and started its irradiation in September 2009. It is anticipated to complete its irradiation in early calendar 2011. This paper will discuss the design of the experiment including the test train and the temperature and compressive load monitoring, control, and the irradiation experience to date.