Experimental and Analytical Modeling of the in Vivo and in Vitro Biomechanical Behavior of the Human Lumbar Spine

Experimental and Analytical Modeling of the in Vivo and in Vitro Biomechanical Behavior of the Human Lumbar Spine

Author: Tov I. Vestgaarden

Publisher:

Published: 2007

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

ABSTRACT: This dissertation has two major parts; Analytical and Experimental. The analytical section contains a study using Finite Element Analysis of dynamic instrumentation to demonstrate stress reduction in adjacent level discs. The experimental section contains biomechanical testing of facet fusion allograft technique and finally a comparison between In Vivo and In Vitro intradiscal pressures to determine forces acting on Lumbar spine segment L4-L5. A comprehensive study of available data, technology and literature was done. Conventional fusion instrumentation is believed to accelerate the degeneration of adjacent discs due to the increased stresses caused by motion discontinuity. A three dimensional finite element model of the lumbar spine was obtained which simulated flexion and extension. Reduced stiffness and increased axial motion of dynamic posterior lumbar fusion instrumentation designs results in a ~10% cumulative stress reduction for each flexion cycle. The cumulative effect of this reduced amplitude and distribution of peak stresses in the adjacent disc may partially alleviate the problem of adjacent level disc degeneration. Traditionally a pedicle screw system has been used for fixation of the lumbar spine and this involves major surgery and recovery time. Facet fixation is a technique that has been used for stabilization of the lumbar spine. The cadaver segments were tested in axial rotation, combined flexion/extension and lateral bending. Implantation of the allograft dowel resulted in a significant increase in stiffness compared to control. Facet fusion allograft provides an effective minimally invasive method of treating debilitating pain caused by deteriorated facet joints by permanently fusing them. An In Vitro biomechanical study was conducted to determine the intradiscal pressure during spinal loading. The intradiscal pressures in flexion/extension, lateral bending and axial rotation was compared to In Vivo published data. There is no data that explains the actual forces acting on the spine during flexion, extension, lateral bending or axial rotation. The functional spinal units were tested in combined axial compression and flexion/extension, combined axial compression and lateral bending and combined axial compression and axial rotation using a nondestructive testing method. Overall, this study found a good correlation between In Vivo and In Vitro data. This can essentially be used to make physiological relation from experimental and analytical evaluations of the lumbar spine. It is important to know how much load needs to be controlled by an implant.


Characterization and Biomechanical Analysis of the Human Lumbar Spine with In Vitro Testing Conditions

Characterization and Biomechanical Analysis of the Human Lumbar Spine with In Vitro Testing Conditions

Author: Dean Keith Stolworthy

Publisher:

Published: 2011

Total Pages: 328

ISBN-13:

DOWNLOAD EBOOK

In conclusion, the biomechanical response was significantly altered due to testing temperature, loading-rate, and application of a compressive follower-load. The author emphasizes the necessity to simulate the physiological environment during ex vivo biomechanical analysis of the lumbar spine in order to obtain a physiological response. Simplified testing procedures may be implemented only after the particular effect is known.


A Three Dimensional Finite Element Model to Study the Biomechanical and Kinematic Characteristics of the Human Lumbar Spine in Flexion

A Three Dimensional Finite Element Model to Study the Biomechanical and Kinematic Characteristics of the Human Lumbar Spine in Flexion

Author: Dhruv Jitesh Mehta

Publisher:

Published: 2007

Total Pages: 71

ISBN-13:

DOWNLOAD EBOOK

The aim of the research was to develop a three-dimensional finite element model to study the biomechanical and kinematic characteristics of the human lumbar spine in flexion. An analytical model of the lumbar spine capable of taking into consideration the actual geometry, non-linear material properties and realistic loading would be of benefit in studying normal biomechanics, as well as in-vivo behavior in injured and surgically altered spines. Fundamental to this approach is an accurate model of the spine. This was achieved by modeling the lumbar segments L2-L4 from Computed Tomography (CT) data and analyzing them under loading conditions that best approximated the human lumbar segments in flexion. An in-vitro study was performed for validation of the finite element model. Human lumbar cadaveric spinal segments (L2-L4) were loaded based on test conditions similar to those defined in the finite element analysis. The results of the cadaver biomechanical study and finite element analysis were compared. The results suggest that the model is a valid approach to assessing the range of motion of the L3 segment under flexion. Rotation under lateral bending moments was additionally investigated to provide a thorough validation of the model.


Human Orthopaedic Biomechanics

Human Orthopaedic Biomechanics

Author: Bernardo Innocenti

Publisher: Academic Press

Published: 2022-02-24

Total Pages: 759

ISBN-13: 0128244828

DOWNLOAD EBOOK

Human Orthopaedic Biomechanics: Fundamentals, Devices and Applications covers a wide range of biomechanical topics and fields, ranging from theoretical issues, mechanobiology, design of implants, joint biomechanics, regulatory issues and practical applications. The book teaches the fundamentals of physiological loading and constraint conditions at various parts of the musculoskeletal system. It is an ideal resource for teaching and education in courses on orthopedic biomechanics, and for engineering students engaged in these courses. In addition, all bioengineers who have an interest in orthopedic biomechanics will find this title useful as a reference, particularly early career researchers and industry professionals. Finally, any orthopedic surgeons looking to deepen their knowledge of biomechanical aspects will benefit from the accessible writing style in this title. - Covers theoretical aspects (mechanics, stress analysis, constitutive laws for the various musculoskeletal tissues and mechanobiology) - Presents components of different regulatory aspects, failure analysis, post-marketing and clinical trials - Includes state-of-the-art methods used in orthopedic biomechanics and in designing orthopedic implants (experimental methods, finite element and rigid-body models, gait and fluoroscopic analysis, radiological measurements)


Determination of Biomechanical Properties and Mechanobiological Behavior of a Spinal Motion Segment with Scoliosis Treatment Using Finite Element Analysis

Determination of Biomechanical Properties and Mechanobiological Behavior of a Spinal Motion Segment with Scoliosis Treatment Using Finite Element Analysis

Author: Bharathwaj Kumar

Publisher:

Published: 2011

Total Pages: 76

ISBN-13:

DOWNLOAD EBOOK

Scoliosis is a musculoskeletal abnormality causing complex three dimensional curvatures in the spine. Current surgical treatments for this adolescent spinal deformity are successful but invasive. Potential new treatments that are less invasive are being developed based on altering growth by mechanically redistributing stresses across the vertebral growth plates. In the literature, in vivo and in vitro tests have shown biomechanical changes in the disc and growth plates due to insertion of staple like implants used in these new methods. In order to understand the biomechanics behind these potential new methods, a nonlinear finite element analysis (FEA) is performed and various biomechanical properties of the spinal segment with and without the implant are determinedA three-dimensional FE model of T7-T8 motion segment was developed from a CT scan of a porcine spine and imported to ABAQUS (an FEA software). Various material properties and contact interactions were used from the literature in determining the model that best predicted the available experimental load-displacement curve and the compressive properties of the disc. Bending loads were applied to this FE model to determine the reduction in the motion of the spinal segment. Sensitivity of the implant features were examined against the compressive properties of the disc. Mechanobiological growth models have been partially developed to study various biomechanical factors causing deformities in spine. This available model was utilized in understanding how growth in a normal spine could be influenced due to the presence of these implants.


Biomechanical Models of the Human Thoracic and Lumbar Spine

Biomechanical Models of the Human Thoracic and Lumbar Spine

Author: Maria Elizete Kunkel

Publisher: Sudwestdeutscher Verlag Fur Hochschulschriften AG

Published: 2012-04

Total Pages: 80

ISBN-13: 9783838131726

DOWNLOAD EBOOK

Severe cases of scoliosis are treated using implants. The effects of different types of implants have been investigated with mathematical models with modifiable geometry. Our aim was perform a nonlinear regression analyses with anatomical data to generate prediction equations for vertebral and intervertebral disc dimensions as a function of only one given dimension measurable by X-ray, the vertebral body height. Third-order polyno-mial regressions provided moderate to high correlation between the vertebral body heights and the endplates and spinal canal; pedicle heights and the spinous process, in addition to a reasonable correlation of the posterior vertebral structures (pedicle and facet). A set of 50 equations was generated for the prediction of the spine dimensions based on the radiographic measurement of the vertebral body height. It was possible to establish useful predictions for all investigated dimensions. This is an efficient approach for obtaining anatomical data for modeling of the human thoracic and lumbar from measurement of only one parameter per vertebra without the need for direct measurement or 3D reconstructions from medical images.