Experimental and Analytical Modeling of Natural Circulation and Forced Circulation BWRs

Experimental and Analytical Modeling of Natural Circulation and Forced Circulation BWRs

Author: Masahiro Furuya

Publisher: IOS Press

Published: 2006

Total Pages: 148

ISBN-13: 9781586036058

DOWNLOAD EBOOK

20% of the Nuclear Power Plants are known as Boiling Water Reactors (BWRs). These BWRs have pumps that cool their reactor. In the design of new BWRs, ways to cool the core by a natural circulation flow, without pumps, also called natural circulation BWRs, are being considered. In these new systems, a chimney is installed on top of the core to increase natural circulation flow. A possible disadvantage of natural circulation BWRs might be their susceptibility to instabilities, which could then lead to both flow and power oscillations. The stability features of both natural circulation and forced circulation BWRs have been investigated thoroughly, using dedicated experimental setups, analytical models and numerical codes. We distinguish between pure thermal-hydraulic stability - where the fission power is assumed to be constant - and coupled thermalhydraulic-neutronic stability - where the two-phase mixture in the core influences the fission chain reaction...


Single-phase, Two-phase and Supercritical Natural Circulation Systems

Single-phase, Two-phase and Supercritical Natural Circulation Systems

Author: Pallippattu Krishnan Vijayan

Publisher: Woodhead Publishing

Published: 2019-06-19

Total Pages: 651

ISBN-13: 0081024878

DOWNLOAD EBOOK

Single-Phase, Two-Phase and Supercritical Natural Circulation Systems provides readers with a deep understanding of natural circulation systems. This book equips the reader with an understanding on how to detect unstable loops to ensure plant safety and reliability, calculate heat transport capabilities, and design effective natural circulation loops, stability maps and parallel channel systems. Each chapter begins with an introduction to the circulation system before discussing each element in detail and analyzing its effect on the performance of the system. The book also presents thermosyphon heat transport devices in nuclear and other industrial plants, a common information need for students and researchers alike. This book is invaluable for engineers, designers, operators and consultants in nuclear, mechanical, electrical and chemical disciplines. - Presents single-phase, two-phase and supercritical natural circulation systems together in one resource to fill an existing knowledge gap - Guides the reader through relevant processes, such as designing, analyzing and generating stability maps and natural circulation loops, calculating heat transport capabilities, and maintaining natural circulation system operations - Includes global case studies and examples to increase understanding, along with important IAEA standards and procedures


Experimental and Numerical Stability Investigations on Natural Circulation Boiling Water Reactors

Experimental and Numerical Stability Investigations on Natural Circulation Boiling Water Reactors

Author: Christian Pablo Marcel

Publisher: IOS Press

Published: 2007

Total Pages: 160

ISBN-13: 1586038036

DOWNLOAD EBOOK

In the design of novel nuclear reactors active systems are replaced by passive ones in order to reduce the risk of failure. For that reason natural circulation is being considered as the primary cooling mechanism in next generation nuclear reactor designs such as the natural circulation boiling water reactor (BWR). In such a reactor, however, the flow is not a controlled parameter but is dependent on the power. As a result, the dynamical behavior significantly differs from that in conventional forced circulation BWRs. For that reason, predicting the stability characteristics of these reactors has to be carefully studied. In this work, a number of open issues are investigated regarding the stability of natural circulation BWRs (e.g. margins to instabilities at rated conditions, interaction between the thermal-hydraulics and the neutronics, and the occurrence of flashing induced instabilities) with a strong emphasis on experimental evidence.


Handbook of Generation IV Nuclear Reactors

Handbook of Generation IV Nuclear Reactors

Author: Igor Pioro

Publisher: Woodhead Publishing

Published: 2022-12-07

Total Pages: 1112

ISBN-13: 0128226536

DOWNLOAD EBOOK

Handbook of Generation IV Nuclear Reactors, Second Edition is a fully revised and updated comprehensive resource on the latest research and advances in generation IV nuclear reactor concepts. Editor Igor Pioro and his team of expert contributors have updated every chapter to reflect advances in the field since the first edition published in 2016. The book teaches the reader about available technologies, future prospects and the feasibility of each concept presented, equipping them users with a strong skillset which they can apply to their own work and research. - Provides a fully updated, revised and comprehensive handbook dedicated entirely to generation IV nuclear reactors - Includes new trends and developments since the first publication, as well as brand new case studies and appendices - Covers the latest research, developments and design information surrounding generation IV nuclear reactors


Fractional-Order Models for Nuclear Reactor Analysis

Fractional-Order Models for Nuclear Reactor Analysis

Author: Gilberto Espinosa Paredes

Publisher: Woodhead Publishing

Published: 2020-10-22

Total Pages: 404

ISBN-13: 0128236663

DOWNLOAD EBOOK

Fractional-Order Models for Nuclear Reactor Analysis presents fractional modeling issues in the context of anomalous diffusion processes in an accessible and practical way. The book emphasizes the importance of non-Fickian diffusion in heterogeneous systems as the core of the nuclear reactor, as well as different variations of diffusion processes in nuclear reactors which are presented to establish the importance of nuclear and thermohydraulic phenomena and the physical side effects of feedback. In addition, the book analyzes core issues in fractional modeling in nuclear reactors surrounding phenomenological description and important analytical sub-diffusive processes in the transport neutron. Users will find the most innovative modeling techniques of nuclear reactors using operator differentials of fractional order and applications in nuclear design and reactor dynamics. Proposed methods are tested with Boltzmann equations and non-linear order models alongside real data from nuclear power plants, making this a valuable resource for nuclear professionals, researchers and graduate students, as well as those working in nuclear research centers with expertise in mathematical modeling, physics and control. - Presents and analyzes a new paradigm of nuclear reactor phenomena with fractional modeling - Considers principles of fractional calculation, methods of solving differential equations of fractional order, and their applications - Includes methodologies of linear and nonlinear analysis, along with design and dynamic analyses


An Experimental and Modelling Study of Natural-circulation Boiling Water Reactor Dynamics

An Experimental and Modelling Study of Natural-circulation Boiling Water Reactor Dynamics

Author: RĂ³bert Zboray

Publisher: IOS Press

Published: 2002

Total Pages: 178

ISBN-13:

DOWNLOAD EBOOK

Contents of this Doctoral Dissertation include: Understanding the linear stability characteristics of BWRs, Experiments on the stability of the Desire facility, Applications of the reducer-order model, Numerical analysis of the nonlinear dynamics of BWRs, Experiments on the nonlinear dynamics of natural-circulation two-phase flows, Experiments on the neutronic-thermalhydraulic stability, Conclusions and Discussion