(Jazz Book). The second edition of this bestseller comes highly endorsed from the pros and is published at a new lower price! It continues to be a "must-have" for students of improvisation, demonstrating developing new material for jazz-fusion.
Careful presentation of fundamentals of the theory by one of the finest modern expositors of higher mathematics. Covers functions of real and complex variables, arbitrary and null sequences, convergence and divergence, Cauchy's limit theorem, more.
The first in a new series on conversation analysis, the study of talk in interaction. This volume looks at the ways in which turns-at-talk are ordered to make actions take place in conversation.
Excellent introductory text, written by two experts, presents a coherent and systematic view of principles and methods. Topics include integration by parts, Watson's lemma, LaPlace's method, stationary phase, and steepest descents. Additional subjects include the Mellin transform method and less elementary aspects of the method of steepest descents. 1975 edition.
The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics OCo among them, GrassmannOCoCayley algebra and Geometric Algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries. This book contains the author and his collaborators' most recent, original development of GrassmannOCoCayley algebra and Geometric Algebra and their applications in automated reasoning of classical geometries. It includes two of the three advanced invariant algebras OCo Cayley bracket algebra, conformal geometric algebra, and null bracket algebra OCo for highly efficient geometric computing. They form the theory of advanced invariants, and capture the intrinsic beauty of geometric languages and geometric computing. Apart from their applications in discrete and computational geometry, the new languages are currently being used in computer vision, graphics and robotics by many researchers worldwide. Sample Chapter(s). Chapter 1: Introduction (252 KB). Contents: Projective Space, Bracket Algebra and GrassmannOCoCayley Algebra; Projective Incidence Geometry with Cayley Bracket Algebra; Projective Conic Geometry with Bracket Algebra and Quadratic Grassmann-Cayley Algebra; Inner-product Bracket Algebra and Clifford Algebra; Geometric Algebra; Euclidean Geometry and Conformal GrassmannOCoCayley Algebra; Conformal Clifford Algebra and Classical Geometries. Readership: Graduate students in discrete and computational geometry, and computer mathematics; mathematicians and computer scientists.
Proceedings of the joint conferences of the Twenty-Fifth International ThermalConductivity Conference and the Proceedings of the Thirteenth International Thermal Expansion Symposium, on June 13-16, 1999 in Ann Arbor, Michigan USA.
This book gives introductory chapters on the classical basic and standard methods for asymptotic analysis, such as Watson's lemma, Laplace's method, the saddle point and steepest descent methods, stationary phase and Darboux's method. The methods, explained in great detail, will obtain asymptotic approximations of the well-known special functions of mathematical physics and probability theory. After these introductory chapters, the methods of uniform asymptotic analysis are described in which several parameters have influence on typical phenomena: turning points and transition points, coinciding saddle and singularities. In all these examples, the special functions are indicated that describe the peculiar behavior of the integrals.The text extensively covers the classical methods with an emphasis on how to obtain expansions, and how to use the results for numerical methods, in particular for approximating special functions. In this way, we work with a computational mind: how can we use certain expansions in numerical analysis and in computer programs, how can we compute coefficients, and so on.