Existence and Regularity Results for Some Shape Optimization Problems

Existence and Regularity Results for Some Shape Optimization Problems

Author: Bozhidar Velichkov

Publisher: Springer

Published: 2015-03-21

Total Pages: 362

ISBN-13: 8876425276

DOWNLOAD EBOOK

​We study the existence and regularity of optimal domains for functionals depending on the spectrum of the Dirichlet Laplacian or of more general Schrödinger operators. The domains are subject to perimeter and volume constraints; we also take into account the possible presence of geometric obstacles. We investigate the properties of the optimal sets and of the optimal state functions. In particular, we prove that the eigenfunctions are Lipschitz continuous up to the boundary and that the optimal sets subject to the perimeter constraint have regular free boundary. We also consider spectral optimization problems in non-Euclidean settings and optimization problems for potentials and measures, as well as multiphase and optimal partition problems.


New Trends in Shape Optimization

New Trends in Shape Optimization

Author: Aldo Pratelli

Publisher: Birkhäuser

Published: 2015-12-01

Total Pages: 312

ISBN-13: 3319175637

DOWNLOAD EBOOK

This volume reflects “New Trends in Shape Optimization” and is based on a workshop of the same name organized at the Friedrich-Alexander University Erlangen-Nürnberg in September 2013. During the workshop senior mathematicians and young scientists alike presented their latest findings. The format of the meeting allowed fruitful discussions on challenging open problems, and triggered a number of new and spontaneous collaborations. As such, the idea was born to produce this book, each chapter of which was written by a workshop participant, often with a collaborator. The content of the individual chapters ranges from survey papers to original articles; some focus on the topics discussed at the Workshop, while others involve arguments outside its scope but which are no less relevant for the field today. As such, the book offers readers a balanced introduction to the emerging field of shape optimization.


Regularity of the One-phase Free Boundaries

Regularity of the One-phase Free Boundaries

Author: Bozhidar Velichkov

Publisher: Springer Nature

Published: 2023-02-24

Total Pages: 249

ISBN-13: 3031132386

DOWNLOAD EBOOK

This open access book is an introduction to the regularity theory for free boundary problems. The focus is on the one-phase Bernoulli problem, which is of particular interest as it deeply influenced the development of the modern free boundary regularity theory and is still an object of intensive research. The exposition is organized around four main theorems, which are dedicated to the one-phase functional in its simplest form. Many of the methods and the techniques presented here are very recent and were developed in the context of different free boundary problems. We also give the detailed proofs of several classical results, which are based on some universal ideas and are recurrent in the free boundary, PDE and the geometric regularity theories. This book is aimed at graduate students and researches and is accessible to anyone with a moderate level of knowledge of elliptical PDEs.


Non-Smooth and Complementarity-Based Distributed Parameter Systems

Non-Smooth and Complementarity-Based Distributed Parameter Systems

Author: Michael Hintermüller

Publisher: Springer Nature

Published: 2022-02-18

Total Pages: 518

ISBN-13: 3030793931

DOWNLOAD EBOOK

Many of the most challenging problems in the applied sciences involve non-differentiable structures as well as partial differential operators, thus leading to non-smooth distributed parameter systems. This edited volume aims to establish a theoretical and numerical foundation and develop new algorithmic paradigms for the treatment of non-smooth phenomena and associated parameter influences. Other goals include the realization and further advancement of these concepts in the context of robust and hierarchical optimization, partial differential games, and nonlinear partial differential complementarity problems, as well as their validation in the context of complex applications. Areas for which applications are considered include optimal control of multiphase fluids and of superconductors, image processing, thermoforming, and the formation of rivers and networks. Chapters are written by leading researchers and present results obtained in the first funding phase of the DFG Special Priority Program on Nonsmooth and Complementarity Based Distributed Parameter Systems: Simulation and Hierarchical Optimization that ran from 2016 to 2019.


Recent Advances in Partial Differential Equations and Applications

Recent Advances in Partial Differential Equations and Applications

Author: Vicenţiu D. Rădulescu

Publisher: American Mathematical Soc.

Published: 2016-06-28

Total Pages: 418

ISBN-13: 1470415216

DOWNLOAD EBOOK

This volume contains the proceedings of the International Conference on Recent Advances in PDEs and Applications, in honor of Hugo Beirão da Veiga's 70th birthday, held from February 17–21, 2014, in Levico Terme, Italy. The conference brought together leading experts and researchers in nonlinear partial differential equations to promote research and to stimulate interactions among the participants. The workshop program testified to the wide-ranging influence of Hugo Beirão da Veiga on the field of partial differential equations, in particular those related to fluid dynamics. In his own work, da Veiga has been a seminal influence in many important areas: Navier-Stokes equations, Stokes systems, non-Newtonian fluids, Euler equations, regularity of solutions, perturbation theory, vorticity phenomena, and nonlinear potential theory, as well as various degenerate or singular models in mathematical physics. This same breadth is reflected in the mathematical papers included in this volume.


Variational Methods in Shape Optimization Problems

Variational Methods in Shape Optimization Problems

Author: Dorin Bucur

Publisher: Springer Science & Business Media

Published: 2006-09-13

Total Pages: 218

ISBN-13: 0817644032

DOWNLOAD EBOOK

Shape optimization problems are treated from the classical and modern perspectives Targets a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems Requires only a standard knowledge in the calculus of variations, differential equations, and functional analysis Driven by several good examples and illustrations Poses some open questions.


Trends in PDE Constrained Optimization

Trends in PDE Constrained Optimization

Author: Günter Leugering

Publisher: Springer

Published: 2014-12-22

Total Pages: 539

ISBN-13: 3319050834

DOWNLOAD EBOOK

Optimization problems subject to constraints governed by partial differential equations (PDEs) are among the most challenging problems in the context of industrial, economical and medical applications. Almost the entire range of problems in this field of research was studied and further explored as part of the Deutsche Forschungsgemeinschaft (DFG) priority program 1253 on “Optimization with Partial Differential Equations” from 2006 to 2013. The investigations were motivated by the fascinating potential applications and challenging mathematical problems that arise in the field of PDE constrained optimization. New analytic and algorithmic paradigms have been developed, implemented and validated in the context of real-world applications. In this special volume, contributions from more than fifteen German universities combine the results of this interdisciplinary program with a focus on applied mathematics. The book is divided into five sections on “Constrained Optimization, Identification and Control”, “Shape and Topology Optimization”, “Adaptivity and Model Reduction”, “Discretization: Concepts and Analysis” and “Applications”. Peer-reviewed research articles present the most recent results in the field of PDE constrained optimization and control problems. Informative survey articles give an overview of topics that set sustainable trends for future research. This makes this special volume interesting not only for mathematicians, but also for engineers and for natural and medical scientists working on processes that can be modeled by PDEs.


Partial Differential Equations On Multistructures

Partial Differential Equations On Multistructures

Author: Felix Mehmeti

Publisher: CRC Press

Published: 2001-04-10

Total Pages: 288

ISBN-13: 0824745043

DOWNLOAD EBOOK

This text is based on lectures presented at the International Conference on Partial Differential Equations (PDEs) on Multistructures, held in Luminy, France. It contains advances in the field, compiling research on the analyses and applications of multistructures - including treatments of classical theories, specific characterizations and modellings of multistructures, and discussions on uses in physics, electronics, and biology.


A Course in the Calculus of Variations

A Course in the Calculus of Variations

Author: Filippo Santambrogio

Publisher: Springer Nature

Published: 2024-01-18

Total Pages: 354

ISBN-13: 3031450361

DOWNLOAD EBOOK

This book provides an introduction to the broad topic of the calculus of variations. It addresses the most natural questions on variational problems and the mathematical complexities they present. Beginning with the scientific modeling that motivates the subject, the book then tackles mathematical questions such as the existence and uniqueness of solutions, their characterization in terms of partial differential equations, and their regularity. It includes both classical and recent results on one-dimensional variational problems, as well as the adaptation to the multi-dimensional case. Here, convexity plays an important role in establishing semi-continuity results and connections with techniques from optimization, and convex duality is even used to produce regularity results. This is then followed by the more classical Hölder regularity theory for elliptic PDEs and some geometric variational problems on sets, including the isoperimetric inequality and the Steiner tree problem. The book concludes with a chapter on the limits of sequences of variational problems, expressed in terms of Γ-convergence. While primarily designed for master's-level and advanced courses, this textbook, based on its author's instructional experience, also offers original insights that may be of interest to PhD students and researchers. A foundational understanding of measure theory and functional analysis is required, but all the essential concepts are reiterated throughout the book using special memo-boxes.


Optimal Control of Partial Differential Equations

Optimal Control of Partial Differential Equations

Author: Karl-Heinz Hoffmann

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 324

ISBN-13: 3034886918

DOWNLOAD EBOOK

The application of PDE-based control theory and the corresponding numerical algorithms to industrial problems have become increasingly important in recent years. This volume offers a wide spectrum of aspects of the discipline, and is of interest to mathematicians and scientists working in the field.