Exercises in (Mathematical) Style

Exercises in (Mathematical) Style

Author: John McCleary

Publisher: The Mathematical Association of America

Published: 2017-05-17

Total Pages: 289

ISBN-13: 0883856522

DOWNLOAD EBOOK

Hover over the image to zoom. Click the image for a popup.Email a Friend About This ItemLogin to Submit a Review inShare John McCleary In Exercises in (Mathematical) Style, the author investigates the world of that familiar set of numbers, the binomial coefficients. While the reader learns some of the properties, relations, and generalizations of the numbers of Pascal's triangle, each story explores a different mode of discourse - from arguing algebraically, combinatorially, geometrically, or by induction, contradiction, or recursion to discovering mathematical facts in poems, music, letters, and various styles of stories. The author follows the example of Raymond Queneau's Exercises in Style, giving the reader 99 stories in various styles. The ubiquitous nature of binomial coefficients leads the tour through combinatorics, number theory, algebra, analysis, and even topology. The book celebrates the joy of writing and the joy of mathematics, found by engaging the rich properties of this simple set of numbers.


Exercises in (Mathematical) Style

Exercises in (Mathematical) Style

Author: John McCleary

Publisher: American Mathematical Soc.

Published: 2017

Total Pages: 275

ISBN-13: 1470447835

DOWNLOAD EBOOK

What does style mean in mathematics? Style is both how one does something and how one communicates what was done. In this book, the author investigates the worlds of the well-known numbers, the binomial coefficients. The author follows the example of Raymond Queneau's Exercises in Style. Offering the reader 99 stories in various styles. The book celebrates the joy of mathematics and the joy of writing mathematics by exploring the rich properties of this familiar collection of numbers. For any one interested in mathematics, from high school students on up.


Modern Classical Homotopy Theory

Modern Classical Homotopy Theory

Author: Jeffrey Strom

Publisher: American Mathematical Soc.

Published: 2011-10-19

Total Pages: 862

ISBN-13: 0821852868

DOWNLOAD EBOOK

The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.


Exercises in Style

Exercises in Style

Author: Raymond Queneau

Publisher: New Directions Publishing

Published: 1981

Total Pages: 212

ISBN-13: 9780811207898

DOWNLOAD EBOOK

Queneau uses a variety of literary styles and forms in ninety-nine exercises which retell the same story about a minor brawl aboard a bus.


An Illustrated Theory of Numbers

An Illustrated Theory of Numbers

Author: Martin H. Weissman

Publisher: American Mathematical Soc.

Published: 2020-09-15

Total Pages: 341

ISBN-13: 1470463717

DOWNLOAD EBOOK

News about this title: — Author Marty Weissman has been awarded a Guggenheim Fellowship for 2020. (Learn more here.) — Selected as a 2018 CHOICE Outstanding Academic Title — 2018 PROSE Awards Honorable Mention An Illustrated Theory of Numbers gives a comprehensive introduction to number theory, with complete proofs, worked examples, and exercises. Its exposition reflects the most recent scholarship in mathematics and its history. Almost 500 sharp illustrations accompany elegant proofs, from prime decomposition through quadratic reciprocity. Geometric and dynamical arguments provide new insights, and allow for a rigorous approach with less algebraic manipulation. The final chapters contain an extended treatment of binary quadratic forms, using Conway's topograph to solve quadratic Diophantine equations (e.g., Pell's equation) and to study reduction and the finiteness of class numbers. Data visualizations introduce the reader to open questions and cutting-edge results in analytic number theory such as the Riemann hypothesis, boundedness of prime gaps, and the class number 1 problem. Accompanying each chapter, historical notes curate primary sources and secondary scholarship to trace the development of number theory within and outside the Western tradition. Requiring only high school algebra and geometry, this text is recommended for a first course in elementary number theory. It is also suitable for mathematicians seeking a fresh perspective on an ancient subject.


99 Variations on a Proof

99 Variations on a Proof

Author: Philip Ording

Publisher: Princeton University Press

Published: 2021-10-19

Total Pages: 272

ISBN-13: 0691218978

DOWNLOAD EBOOK

An exploration of mathematical style through 99 different proofs of the same theorem This book offers a multifaceted perspective on mathematics by demonstrating 99 different proofs of the same theorem. Each chapter solves an otherwise unremarkable equation in distinct historical, formal, and imaginative styles that range from Medieval, Topological, and Doggerel to Chromatic, Electrostatic, and Psychedelic. With a rare blend of humor and scholarly aplomb, Philip Ording weaves these variations into an accessible and wide-ranging narrative on the nature and practice of mathematics. Inspired by the experiments of the Paris-based writing group known as the Oulipo—whose members included Raymond Queneau, Italo Calvino, and Marcel Duchamp—Ording explores new ways to examine the aesthetic possibilities of mathematical activity. 99 Variations on a Proof is a mathematical take on Queneau’s Exercises in Style, a collection of 99 retellings of the same story, and it draws unexpected connections to everything from mysticism and technology to architecture and sign language. Through diagrams, found material, and other imagery, Ording illustrates the flexibility and creative potential of mathematics despite its reputation for precision and rigor. Readers will gain not only a bird’s-eye view of the discipline and its major branches but also new insights into its historical, philosophical, and cultural nuances. Readers, no matter their level of expertise, will discover in these proofs and accompanying commentary surprising new aspects of the mathematical landscape.


Algebra: Chapter 0

Algebra: Chapter 0

Author: Paolo Aluffi

Publisher: American Mathematical Soc.

Published: 2021-11-09

Total Pages: 713

ISBN-13: 147046571X

DOWNLOAD EBOOK

Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.


Ultrametric Calculus

Ultrametric Calculus

Author: W. H. Schikhof

Publisher: Cambridge University Press

Published: 2007-01-25

Total Pages: 0

ISBN-13: 0521032873

DOWNLOAD EBOOK

This is an introduction to p-adic analysis which is elementary yet complete and which displays the variety of applications of the subject. Dr Schikhof is able to point out and explain how p-adic and 'real' analysis differ. This approach guarantees the reader quickly becomes acquainted with this equally 'real' analysis and appreciates its relevance. The reader's understanding is enhanced and deepened by the large number of exercises included throughout; these both test the reader's grasp and extend the text in interesting directions. As a consequence, this book will become a standard reference for professionals (especially in p-adic analysis, number theory and algebraic geometry) and will be welcomed as a textbook for advanced students of mathematics familiar with algebra and analysis.


A Programmer's Introduction to Mathematics

A Programmer's Introduction to Mathematics

Author: Jeremy Kun

Publisher:

Published: 2020-05-17

Total Pages: 400

ISBN-13:

DOWNLOAD EBOOK

A Programmer's Introduction to Mathematics uses your familiarity with ideas from programming and software to teach mathematics. You'll learn about the central objects and theorems of mathematics, including graphs, calculus, linear algebra, eigenvalues, optimization, and more. You'll also be immersed in the often unspoken cultural attitudes of mathematics, learning both how to read and write proofs while understanding why mathematics is the way it is. Between each technical chapter is an essay describing a different aspect of mathematical culture, and discussions of the insights and meta-insights that constitute mathematical intuition. As you learn, we'll use new mathematical ideas to create wondrous programs, from cryptographic schemes to neural networks to hyperbolic tessellations. Each chapter also contains a set of exercises that have you actively explore mathematical topics on your own. In short, this book will teach you to engage with mathematics. A Programmer's Introduction to Mathematics is written by Jeremy Kun, who has been writing about math and programming for 10 years on his blog "Math Intersect Programming." As of 2020, he works in datacenter optimization at Google.The second edition includes revisions to most chapters, some reorganized content and rewritten proofs, and the addition of three appendices.


Concrete Mathematics

Concrete Mathematics

Author: Ronald L. Graham

Publisher: Addison-Wesley Professional

Published: 1994-02-28

Total Pages: 811

ISBN-13: 0134389980

DOWNLOAD EBOOK

This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.