Report on Simulation of Fission Gas and Fission Product Diffusion in UO2

Report on Simulation of Fission Gas and Fission Product Diffusion in UO2

Author:

Publisher:

Published: 2016

Total Pages: 25

ISBN-13:

DOWNLOAD EBOOK

In UO2 nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel-clad gap thermal conductivity. We use multi-scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO2 under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functional theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large XeU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the XeU3O cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-moving XeU3O cluster recombines quickly with irradiation induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher concentration of the XeU3O cluster for intrinsic conditions than under irradiation. We speculate that differences in the irradiation conditions and their impact on the XeU3O cluster can explain the wide range of diffusivities reported in experimental studies. However, all vacancy-mediated mechanisms underestimate the Xe diffusivity compared to the empirical radiation-enhanced rate used in most fission gas release models. We investigate the possibility that diffusion of small fission gas bubbles or extended Xe-vacancy clusters may give rise to the observed radiation-enhanced diffusion coefficient. These studies highlight the importance of U divacancies and an octahedron coordination of uranium vacancies encompassing a Xe fission gas atom. The latter cluster can migrate via a multistep mechanism with a rather low effective barrier, which together with irradiation-induced clusters of uranium vacancies, gives rise to the irradiation-enhanced diffusion coefficient observed in experiments.


TMS 2014 143rd Annual Meeting & Exhibition, Annual Meeting Supplemental Proceedings

TMS 2014 143rd Annual Meeting & Exhibition, Annual Meeting Supplemental Proceedings

Author: The Minerals, Metals & Materials Society (TMS)

Publisher: Springer

Published: 2016-12-16

Total Pages: 1152

ISBN-13: 3319482378

DOWNLOAD EBOOK

These papers present advancements in all aspects of high temperature electrochemistry, from the fundamental to the empirical and from the theoretical to the applied. Topics involving the application of electrochemistry to the nuclear fuel cycle, chemical sensors, energy storage, materials synthesis, refractory metals and their alloys, and alkali and alkaline earth metals are included. Also included are papers that discuss various technical, economic, and environmental issues associated with plant operations and industrial practices.


Atomic-scale Simulation of Soluble Fission Products in UO2

Atomic-scale Simulation of Soluble Fission Products in UO2

Author:

Publisher:

Published: 2009

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The continuously increasing amount of energy produced within the nuclear fuel in the reactor is accompanied by an incessant increase of the number of fission products (FPs), which affects the thermo-mechanical behaviour of the fuel rods and eventually limits its lifetime. More precisely the FPs can contribute to an increase of the fuel volume, commonly referred to as fission product swelling, and lead to a chemical as well as a mechanical interaction between the ceramic fuel pellets and the metallic cladding material constituting the first barrier against the release of radioactive FP in the environment. A precise prediction of the moment at which such an interaction is established during the lifetime of a fuel rod in the reactor, or the moment at which the cladding material may fail as a result of such an interaction is strongly affected by the capability to predict the fuel swelling. The contribution of the various classes of fission products to the swelling of the fuel depends strongly on their physical and chemical properties. Because of their virtual negligible solubility, inert gas atoms for instance, have a tendency to precipitate and form bubbles, whereas the soluble fission products will remain within the matrix during normal operating conditions. Accurately predicting the contribution of each (type of) fission product is required for the accurate forecast of the fuel swelling. Nevertheless, there are many uncertainties pertaining to the contribution from each class of FP. The present report aims at assessing the contribution from the soluble FPs by means of an atomistic simulation of the effect of each element on the lattice parameter of the fuel crystal. In the first part a review of previous simulation studies of FPs is provided. In this report, results for the defect volumes associated with the introduction of FP ions in UO2 and uranium dioxide lattice volume swelling as a function of FP concentration are presented, which have not been considered before. In the following section, a review is given of the experimental data available in the open literature for each fission product separately. The details of the fabrication as well as the experimental analysis are provided since they are essential for a comparison of our computations with the experimental data. The theoretical assessment of the effect of each FP on the lattice parameter of UO2 is provided in the third section, and is followed by a direct successful comparison with the experimental results for individual FPO2/FPO/FP2O3-UO2 systems. The models should therefore be reliable for FPs where no or little experimental data exists such as for Sm accommodation in UO2.In the subsequent section, a linear model is developed that combines the isolated defect cluster predictions in the Mott-Littleton technique for predicting the total contribution of all soluble FP on the fuel swelling in UO2 as a function of the burnup. The comparison with experimental volume change data is excellent for annealed irradiated UO2 up to approximately 3% burnup. Understanding swelling in uranium dioxide at larger burnup levels requires models accounting for FP-FP interactions beyond the cluster level considered here. This model for swelling behaviour of UO2 at low burnups is, however, suitable for inclusion in fuel performance codes such as TRANSURANUS. (The present document is extracted from the dissertation presented at Imperial College London for obtaining the degree of Doctor of Philosophy by K.H. Desai in September 2008).


Microstructurally Explicit Simulation of the Transport Behavior in Uranium Dioxide

Microstructurally Explicit Simulation of the Transport Behavior in Uranium Dioxide

Author: Harn Chyi Lim

Publisher:

Published: 2014

Total Pages: 184

ISBN-13:

DOWNLOAD EBOOK

Fission products in nuclear fuel pellets can affect fuel performance as they change the fuel chemistry and structure. The behavior of the fission products and their release mechanisms are important to the operation of a power reactor. Research has shown that fission product release can occur through grain boundary (GB) at low burnups. Early fission gas release models, which assumed spherical grains with no effect of GB diffusion, did not capture the early stage of the release behavior well. In order to understand the phenomenon at low burnup and how it leads to the later release mechanism, a microstructurally explicit model is needed. This dissertation conducted finite element simulations of the transport behavior using 3-D microstructurally explicit models. It looks into the effects of GB character, with emphases on conditions that can lead to enhanced effective diffusion. Moreover, the relationship between temperature and fission product transport is coupled to reflect the high temperature environment. The modeling work began with 3-D microstructure reconstruction for three uranium oxide samples with different oxygen stoichiometry: UO2.00 UO2.06 and UO2.14. The 3-D models were created based on the real microstructure of depleted UO2 samples characterized by Electron Backscattering Diffraction (EBSD) combined with serial sectioning. Mathematical equations on fission gas diffusion and heat conduction were studied and derived to simulate the fission gas transport under GB effect. Verification models showed that 2-D elements can be used to model GBs to reduce the number of elements. The effect of each variable, including fuel stoichiometry, temperature, GB diffusion, triple junction diffusion and GB thermal resistance, is verified, and they are coupled in multi-physics simulations to study the transport of fission gas at different radial location of a fuel pellet. It was demonstrated that the microstructural model can be used to incorporate the effect of different physics to study fission gas transport. The results suggested that the GB effect is the most significant at the edge of fuel pellet where the temperature is the lowest. In the high temperature region, the increase in bulk diffusivity due to excess oxygen diminished the effect of GB diffusion.