In Gene Sharing and Evolution Piatigorsky explores the generality and implications of gene sharing throughout evolution and argues that most if not all proteins perform a variety of functions in the same and in different species, and that this is a fundamental necessity for evolution.
Sequence - Evolution - Function is an introduction to the computational approaches that play a critical role in the emerging new branch of biology known as functional genomics. The book provides the reader with an understanding of the principles and approaches of functional genomics and of the potential and limitations of computational and experimental approaches to genome analysis. Sequence - Evolution - Function should help bridge the "digital divide" between biologists and computer scientists, allowing biologists to better grasp the peculiarities of the emerging field of Genome Biology and to learn how to benefit from the enormous amount of sequence data available in the public databases. The book is non-technical with respect to the computer methods for genome analysis and discusses these methods from the user's viewpoint, without addressing mathematical and algorithmic details. Prior practical familiarity with the basic methods for sequence analysis is a major advantage, but a reader without such experience will be able to use the book as an introduction to these methods. This book is perfect for introductory level courses in computational methods for comparative and functional genomics.
This book provides an up-to-date summary of the principles of protein evolution and discusses both the methods available to analyze the evolutionary history of proteins as well as those for predicting their structure-function relationships. Includes a significantly expanded chapter on genome evolution to cover genomes of model organisms sequenced since the completion of the first edition, and organelle genome evolution Retains its reader-friendly, accessible style and organization Contains an updated glossary and new references, including a list of online reference sites
The Arthur M. Sackler Colloquia of the National Academy of Sciences address scientific topics of broad and current interest, cutting across the boundaries of traditional disciplines. Each year, four or five such colloquia are scheduled, typically two days in length and international in scope. Colloquia are organized by a member of the Academy, often with the assistance of an organizing committee, and feature presentations by leading scientists in the field and discussions with a hundred or more researchers with an interest in the topic. Colloquia presentations are recorded and posted on the National Academy of Sciences Sackler colloquia website and published on CD-ROM. These Colloquia are made possible by a generous gift from Mrs. Jill Sackler, in memory of her husband, Arthur M. Sackler.
As described in this fascinating book, Evo Devo is evolutionary development biology, the third revolution in the science, which shows how the endless forms of animals--butterflies and zebras, trilobites and dinosaurs, apes and humans--were made and evolved.
This volume presents a diverse collection of methodologies used to study various problems at the protein sequence and structure level. The chapters in this book look at issues ranging from broad concepts like protein space to specifics like antibody modeling. Topics include point mutations, gene duplication, de novo emergence of new genes, pairwise correlated mutations, ancestral protein reconstruction, homology modelling, protein stability and dynamics, and protein-protein interactions. The book also covers a wide range of computational approaches, including sequence and structure alignments, phylogenies, physics-based and mathematical approaches, machine learning, and more. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and prerequisites, step-by-step, readily reproducible computational protocols (using command line or graphical user interfaces, sometimes including computer code), and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Computational Methods in Protein Evolution is a valuable resource that offers useful workflows and techniques that will help both novice and expert researchers working with proteins computationally.
This valuable book thoroughly examines adaptive evolution at the DNA level while taking a comprehensive look at the research being done in the area. It presents useful cases where signals of adaptive evolution are detected through neutral molecular evolution, providing a powerful strategy for testing the Darwinian hypothesis of natural selection. By bridging the gap between research on molecular and phenotype evolution and contributing to the unification of the biological sciences, this book will especially appeal to researchers and graduate students in the field of evolutionary biology. Also, with its focus on particular protein molecules and on specific domains of these proteins, it will benefit a wider audience of both evolutionary and functional biologists.