Evolutionary Algorithms in Engineering Applications

Evolutionary Algorithms in Engineering Applications

Author: Dipankar Dasgupta

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 561

ISBN-13: 3662034239

DOWNLOAD EBOOK

Evolutionary algorithms are general-purpose search procedures based on the mechanisms of natural selection and population genetics. They are appealing because they are simple, easy to interface, and easy to extend. This volume is concerned with applications of evolutionary algorithms and associated strategies in engineering. It will be useful for engineers, designers, developers, and researchers in any scientific discipline interested in the applications of evolutionary algorithms. The volume consists of five parts, each with four or five chapters. The topics are chosen to emphasize application areas in different fields of engineering. Each chapter can be used for self-study or as a reference by practitioners to help them apply evolutionary algorithms to problems in their engineering domains.


Introduction to Evolutionary Algorithms

Introduction to Evolutionary Algorithms

Author: Xinjie Yu

Publisher: Springer Science & Business Media

Published: 2010-06-10

Total Pages: 427

ISBN-13: 1849961298

DOWNLOAD EBOOK

Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-to-date treatment of evolutionary algorithms. It covers such hot topics as: • genetic algorithms, • differential evolution, • swarm intelligence, and • artificial immune systems. The reader is introduced to a range of applications, as Introduction to Evolutionary Algorithms demonstrates how to model real world problems, how to encode and decode individuals, and how to design effective search operators according to the chromosome structures with examples of constraint optimization, multiobjective optimization, combinatorial optimization, and supervised/unsupervised learning. This emphasis on practical applications will benefit all students, whether they choose to continue their academic career or to enter a particular industry. Introduction to Evolutionary Algorithms is intended as a textbook or self-study material for both advanced undergraduates and graduate students. Additional features such as recommended further reading and ideas for research projects combine to form an accessible and interesting pedagogical approach to this widely used discipline.


Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques

Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques

Author: Chis, Monica

Publisher: IGI Global

Published: 2010-06-30

Total Pages: 282

ISBN-13: 1615208100

DOWNLOAD EBOOK

Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques lays the foundation for the successful integration of evolutionary computation into software engineering. It surveys techniques ranging from genetic algorithms, to swarm optimization theory, to ant colony optimization, demonstrating their uses and capabilities. These techniques are applied to aspects of software engineering such as software testing, quality assessment, reliability assessment, and fault prediction models, among others, to providing researchers, scholars and students with the knowledge needed to expand this burgeoning application.


Artificial Intelligence and Evolutionary Algorithms in Engineering Systems

Artificial Intelligence and Evolutionary Algorithms in Engineering Systems

Author: L. Padma Suresh

Publisher: Springer

Published: 2014-11-01

Total Pages: 831

ISBN-13: 8132221265

DOWNLOAD EBOOK

The book is a collection of high-quality peer-reviewed research papers presented in Proceedings of International Conference on Artificial Intelligence and Evolutionary Algorithms in Engineering Systems (ICAEES 2014) held at Noorul Islam Centre for Higher Education, Kumaracoil, India. These research papers provide the latest developments in the broad area of use of artificial intelligence and evolutionary algorithms in engineering systems. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.


Evolutionary Algorithms in Engineering Applications

Evolutionary Algorithms in Engineering Applications

Author: Dipankar Dasgupta

Publisher: Springer Science & Business Media

Published: 1997-05-20

Total Pages: 584

ISBN-13: 9783540620211

DOWNLOAD EBOOK

Evolutionary algorithms - an overview. Robust encodings in genetic algorithms. Genetic engineering and design problems. The generation of form using an evolutionary approach. Evolutionary optimization of composite structures. Flaw detection and configuration with genetic algorithms. A genetic algorithm approach for river management. Hazards in genetic design methodologies. The identification and characterization of workload classes. Lossless and Lossy data compression. Database design with genetic algorithms. Designing multiprocessor scheduling algorithms using a distributed genetic algorithm system. Prototype based supervised concept learning using genetic algorithms. Prototyping intelligent vehicle modules using evolutionary algorithms. Gate-level evolvable hardware: empirical study and application. Physical design of VLSI circuits and the application of genetic algorithms. Statistical generalization of performance-related heuristcs for knowledge-lean applications. Optimal scheduling of thermal power generation using evolutionary algorithms. Genetic algorithms and genetic programming for control. Global structure evolution and local parameter learning for control system model reductions. Adaptive recursive filtering using evolutionary algorithms. Numerical techniques for efficient sonar bearing and range searching in the near field using genetic algorithms. Signal design for radar imaging in radar astronomy: genetic optimization. Evolutionary algorithms in target acquisition and sensor fusion. Strategies for the integration of evolutionary/ adaptive search with the engineering design process. identification of mechanical inclusions. GeneAS: a robust optimal design technique for mechanical component design. Genetic algorithms for optimal cutting. Practical issues and recent advances in Job- and Open-Shop scheduling. The key steps to achieve mass customization.


Evolutionary Algorithms

Evolutionary Algorithms

Author: Alain Petrowski

Publisher: John Wiley & Sons

Published: 2017-04-24

Total Pages: 258

ISBN-13: 1848218044

DOWNLOAD EBOOK

Evolutionary algorithms are bio-inspired algorithms based on Darwin’s theory of evolution. They are expected to provide non-optimal but good quality solutions to problems whose resolution is impracticable by exact methods. In six chapters, this book presents the essential knowledge required to efficiently implement evolutionary algorithms. Chapter 1 describes a generic evolutionary algorithm as well as the basic operators that compose it. Chapter 2 is devoted to the solving of continuous optimization problems, without constraint. Three leading approaches are described and compared on a set of test functions. Chapter 3 considers continuous optimization problems with constraints. Various approaches suitable for evolutionary methods are presented. Chapter 4 is related to combinatorial optimization. It provides a catalog of variation operators to deal with order-based problems. Chapter 5 introduces the basic notions required to understand the issue of multi-objective optimization and a variety of approaches for its application. Finally, Chapter 6 describes different approaches of genetic programming able to evolve computer programs in the context of machine learning.


Evolutionary Algorithms for Solving Multi-Objective Problems

Evolutionary Algorithms for Solving Multi-Objective Problems

Author: Carlos Coello Coello

Publisher: Springer Science & Business Media

Published: 2007-08-26

Total Pages: 810

ISBN-13: 0387367977

DOWNLOAD EBOOK

This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems. It contains exhaustive appendices, index and bibliography and links to a complete set of teaching tutorials, exercises and solutions.


Applied Evolutionary Algorithms in Java

Applied Evolutionary Algorithms in Java

Author: Robert Ghanea-Hercock

Publisher: Springer Science & Business Media

Published: 2013-03-20

Total Pages: 232

ISBN-13: 0387216154

DOWNLOAD EBOOK

This book is intended for students, researchers, and professionals interested in evolutionary algorithms at graduate and postgraduate level. No mathematics beyond basic algebra and Cartesian graphs methods is required, as the aim is to encourage applying the JAVA toolkit to develop an appreciation of the power of these techniques.


Optimization Using Evolutionary Algorithms and Metaheuristics

Optimization Using Evolutionary Algorithms and Metaheuristics

Author: Kaushik Kumar

Publisher: CRC Press

Published: 2019-08-22

Total Pages: 127

ISBN-13: 1000546802

DOWNLOAD EBOOK

Metaheuristic optimization is a higher-level procedure or heuristic designed to find, generate, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem, especially with incomplete or imperfect information or limited computation capacity. This is usually applied when two or more objectives are to be optimized simultaneously. This book is presented with two major objectives. Firstly, it features chapters by eminent researchers in the field providing the readers about the current status of the subject. Secondly, algorithm-based optimization or advanced optimization techniques, which are applied to mostly non-engineering problems, are applied to engineering problems. This book will also serve as an aid to both research and industry. Usage of these methodologies would enable the improvement in engineering and manufacturing technology and support an organization in this era of low product life cycle. Features: Covers the application of recent and new algorithms Focuses on the development aspects such as including surrogate modeling, parallelization, game theory, and hybridization Presents the advances of engineering applications for both single-objective and multi-objective optimization problems Offers recent developments from a variety of engineering fields Discusses Optimization using Evolutionary Algorithms and Metaheuristics applications in engineering


Practical Applications of Evolutionary Computation to Financial Engineering

Practical Applications of Evolutionary Computation to Financial Engineering

Author: Hitoshi Iba

Publisher: Springer Science & Business Media

Published: 2012-02-15

Total Pages: 253

ISBN-13: 3642276482

DOWNLOAD EBOOK

“Practical Applications of Evolutionary Computation to Financial Engineering” presents the state of the art techniques in Financial Engineering using recent results in Machine Learning and Evolutionary Computation. This book bridges the gap between academics in computer science and traders and explains the basic ideas of the proposed systems and the financial problems in ways that can be understood by readers without previous knowledge on either of the fields. To cement the ideas discussed in the book, software packages are offered that implement the systems described within. The book is structured so that each chapter can be read independently from the others. Chapters 1 and 2 describe evolutionary computation. The third chapter is an introduction to financial engineering problems for readers who are unfamiliar with this area. The following chapters each deal, in turn, with a different problem in the financial engineering field describing each problem in detail and focusing on solutions based on evolutionary computation. Finally, the two appendixes describe software packages that implement the solutions discussed in this book, including installation manuals and parameter explanations.