Evaluation of Econometric Models presents approaches to assessing and enhancing the progress of applied economic research. This book discusses the problems and issues in evaluating econometric models, use of exploratory methods in economic analysis, and model construction and evaluation when theoretical knowledge is scarce. The data analysis by partial least squares, prediction analysis of economic models, and aggregation and disaggregation of nonlinear equations are also elaborated. This text likewise covers the comparison of econometric models by optimal control techniques, role of time series analysis in econometric model evaluation, and hypothesis testing in spectral regression. Other topics include the relevance of laboratory experiments to testing resource allocation theory and token economy and animal models for the experimental analysis of economic behavior. This publication is intended for students and researchers interested in evaluating econometric models.
The Handbook is a definitive reference source and teaching aid for econometricians. It examines models, estimation theory, data analysis and field applications in econometrics. Comprehensive surveys, written by experts, discuss recent developments at a level suitable for professional use by economists, econometricians, statisticians, and in advanced graduate econometrics courses.
This is the second edition, essentially a completely newly written state of the art introduction into the field of macro-econometric models. Its first focus is to present the different specifications and strands of ideas of macro-econometric models, its empirical and analytical uses in economic policy, economic theory, economic history and empirical applications. It documents the intellectual achievements and performance of applied macroeconomic models in general, theoretically and by typical and representative illustrations, leading the reader to the frontiers of present research. Secondly, the book is an introductory text into the bibliography of macro models, which is the background of the monograph. Recalling the field of macro-econometric models, there are additional appendices, e.g. explaining the keywords which cover this territory of economic knowledge, and documenting the huge use of such models. A multilingual cross-reference dictionary (German, English, French, Spanish, Italian) concludes the book.
This is an excerpt from the 4-volume dictionary of economics, a reference book which aims to define the subject of economics today. 1300 subject entries in the complete work cover the broad themes of economic theory. This extract concentrates on time series and statistics.
The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.
This book presents the underlying theory, model development, and applications of network Data Envelopment Analysis (DEA) in a systematic way. The field of network DEA extends and complements conventional DEA by considering not only inputs and outputs when measuring system efficiency, but also the internal structure of the system being analyzed. By analyzing the efficiency of individual internal components, and more particularly by studying the effects of relationships among components which are modeled and implemented by means of various network structures, the “network DEA” approach is able to help identify and manage the specific components that contribute inefficiencies into the overall systems. This relatively new approach comprises an important analytical tool based on mathematical programming techniques, with valuable implications to production and operations management. The existing models for measuring the efficiency of systems of specific network structures are also discussed, and the relationships between the system and component efficiencies are explored. This book should be able to inspire new research and new applications based on the current state of the art. Performance evaluation is an important task in management, and is needed to (i) better understand the past accomplishments of an organization and (ii) plan for its future development. However, this task becomes rather challenging when multiple performance metrics are involved. DEA is a powerful tool to cope with such issues. For systems or operations composed of interrelated processes, managers need to know how the performances of the various processes evaluated and how they are aggregated to form the overall performance of the system. This book provides an advanced exposition on performance evaluation of systems with network structures. It explores the network nature of most production and operation systems, and explains why network analyses are necessary.