Essentials of Pattern Recognition

Essentials of Pattern Recognition

Author: Jianxin Wu

Publisher: Cambridge University Press

Published: 2020-11-19

Total Pages: 401

ISBN-13: 1108483461

DOWNLOAD EBOOK

An accessible undergraduate introduction to the concepts and methods in pattern recognition, machine learning and deep learning.


Essentials of Pattern Recognition

Essentials of Pattern Recognition

Author: Jianxin Wu

Publisher: Cambridge University Press

Published: 2020-11-19

Total Pages: 401

ISBN-13: 1108680828

DOWNLOAD EBOOK

This textbook introduces fundamental concepts, major models, and popular applications of pattern recognition for a one-semester undergraduate course. To ensure student understanding, the text focuses on a relatively small number of core concepts with an abundance of illustrations and examples. Concepts are reinforced with hands-on exercises to nurture the student's skill in problem solving. New concepts and algorithms are framed by real-world context and established as part of the big picture introduced in an early chapter. A problem-solving strategy is employed in several chapters to equip students with an approach for new problems in pattern recognition. This text also points out common errors that a new player in pattern recognition may encounter, and fosters the ability for readers to find useful resources and independently solve a new pattern recognition task through various working examples. Students with an undergraduate understanding of mathematical analysis, linear algebra, and probability will be well prepared to master the concepts and mathematical analysis presented here.


Image Processing and Pattern Recognition

Image Processing and Pattern Recognition

Author: Frank Y. Shih

Publisher: John Wiley & Sons

Published: 2010-05-03

Total Pages: 564

ISBN-13: 0470404612

DOWNLOAD EBOOK

A comprehensive guide to the essential principles of image processing and pattern recognition Techniques and applications in the areas of image processing and pattern recognition are growing at an unprecedented rate. Containing the latest state-of-the-art developments in the field, Image Processing and Pattern Recognition presents clear explanations of the fundamentals as well as the most recent applications. It explains the essential principles so readers will not only be able to easily implement the algorithms and techniques, but also lead themselves to discover new problems and applications. Unlike other books on the subject, this volume presents numerous fundamental and advanced image processing algorithms and pattern recognition techniques to illustrate the framework. Scores of graphs and examples, technical assistance, and practical tools illustrate the basic principles and help simplify the problems, allowing students as well as professionals to easily grasp even complicated theories. It also features unique coverage of the most interesting developments and updated techniques, such as image watermarking, digital steganography, document processing and classification, solar image processing and event classification, 3-D Euclidean distance transformation, shortest path planning, soft morphology, recursive morphology, regulated morphology, and sweep morphology. Additional topics include enhancement and segmentation techniques, active learning, feature extraction, neural networks, and fuzzy logic. Featuring supplemental materials for instructors and students, Image Processing and Pattern Recognition is designed for undergraduate seniors and graduate students, engineering and scientific researchers, and professionals who work in signal processing, image processing, pattern recognition, information security, document processing, multimedia systems, and solar physics.


Fundamentals of Pattern Recognition and Machine Learning

Fundamentals of Pattern Recognition and Machine Learning

Author: Ulisses Braga-Neto

Publisher: Springer Nature

Published: 2020-09-10

Total Pages: 357

ISBN-13: 3030276562

DOWNLOAD EBOOK

Fundamentals of Pattern Recognition and Machine Learning is designed for a one or two-semester introductory course in Pattern Recognition or Machine Learning at the graduate or advanced undergraduate level. The book combines theory and practice and is suitable to the classroom and self-study. It has grown out of lecture notes and assignments that the author has developed while teaching classes on this topic for the past 13 years at Texas A&M University. The book is intended to be concise but thorough. It does not attempt an encyclopedic approach, but covers in significant detail the tools commonly used in pattern recognition and machine learning, including classification, dimensionality reduction, regression, and clustering, as well as recent popular topics such as Gaussian process regression and convolutional neural networks. In addition, the selection of topics has a few features that are unique among comparable texts: it contains an extensive chapter on classifier error estimation, as well as sections on Bayesian classification, Bayesian error estimation, separate sampling, and rank-based classification. The book is mathematically rigorous and covers the classical theorems in the area. Nevertheless, an effort is made in the book to strike a balance between theory and practice. In particular, examples with datasets from applications in bioinformatics and materials informatics are used throughout to illustrate the theory. These datasets are available from the book website to be used in end-of-chapter coding assignments based on python and scikit-learn. All plots in the text were generated using python scripts, which are also available on the book website.


Matrix Methods in Data Mining and Pattern Recognition

Matrix Methods in Data Mining and Pattern Recognition

Author: Lars Elden

Publisher: SIAM

Published: 2007-07-12

Total Pages: 226

ISBN-13: 0898716268

DOWNLOAD EBOOK

Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.Matrix Methods in Data Mining and Pattern Recognition is divided into three parts. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB®. Some mathematical proofs that emphasize the existence and properties of the matrix decompositions are included. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed by the author are: classification of handwritten digits, text mining, text summarization, pagerank computations related to the GoogleÔ search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.Audience The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.Contents Preface; Part I: Linear Algebra Concepts and Matrix Decompositions. Chapter 1: Vectors and Matrices in Data Mining and Pattern Recognition; Chapter 2: Vectors and Matrices; Chapter 3: Linear Systems and Least Squares; Chapter 4: Orthogonality; Chapter 5: QR Decomposition; Chapter 6: Singular Value Decomposition; Chapter 7: Reduced-Rank Least Squares Models; Chapter 8: Tensor Decomposition; Chapter 9: Clustering and Nonnegative Matrix Factorization; Part II: Data Mining Applications. Chapter 10: Classification of Handwritten Digits; Chapter 11: Text Mining; Chapter 12: Page Ranking for a Web Search Engine; Chapter 13: Automatic Key Word and Key Sentence Extraction; Chapter 14: Face Recognition Using Tensor SVD. Part III: Computing the Matrix Decompositions. Chapter 15: Computing Eigenvalues and Singular Values; Bibliography; Index.


Neural Networks for Applied Sciences and Engineering

Neural Networks for Applied Sciences and Engineering

Author: Sandhya Samarasinghe

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 596

ISBN-13: 1420013068

DOWNLOAD EBOOK

In response to the exponentially increasing need to analyze vast amounts of data, Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition provides scientists with a simple but systematic introduction to neural networks. Beginning with an introductory discussion on the role of neural networks in


Pattern Recognition

Pattern Recognition

Author: William Gibson

Publisher: Penguin UK

Published: 2004-06-24

Total Pages: 419

ISBN-13: 0141904461

DOWNLOAD EBOOK

'Part-detective story, part-cultural snapshot . . . all bound by Gibson's pin-sharp prose' Arena -------------- THE FIRST NOVEL IN THE BLUE ANT TRILIOGY - READ ZERO HISTORY AND SPOOK COUNTRY FOR MORE Cayce Pollard has a new job. She's been offered a special project: track down the makers of an addictive online film that's lighting up the internet. Hunting the source will take her to Tokyo and Moscow and put her in the sights of Japanese hackers and Russian Mafia. She's up against those who want to control the film, to own it - who figure breaking the law is just another business strategy. The kind of people who relish turning the hunter into the hunted . . . A gripping spy thriller by William Gibson, bestselling author of Neuromancer. Part prophesy, part satire, Pattern Recognition skewers the absurdity of modern life with the lightest and most engaging of touches. Readers of Neal Stephenson, Ray Bradbury and Iain M. Banks won't be able to put this book down. -------------- 'Fast, witty and cleverly politicized' Guardian 'A big novel, full of bold ideas . . . races along like an expert thriller' GQ 'Dangerously hip. Its dialogue and characterization will amaze you. A wonderfully detailed, reckless journey of espionage and lies' USA Today 'A compelling, humane story with a sympathetic heroine searching for meaning and consolation in a post-everything world' Daily Telegraph 'Electric, profound. Gibson's descriptions of Tokyo, Russia and London are surreally spot-on' Financial Times


Pattern Recognition

Pattern Recognition

Author: Sergios Theodoridis

Publisher: Elsevier

Published: 2003-05-15

Total Pages: 705

ISBN-13: 008051362X

DOWNLOAD EBOOK

Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to "learn" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10 years of teaching experience, the text was developed by the authors through use in their own classrooms.*Approaches pattern recognition from the designer's point of view*New edition highlights latest developments in this growing field, including independent components and support vector machines, not available elsewhere*Supplemented by computer examples selected from applications of interest


Fundamentals of Speaker Recognition

Fundamentals of Speaker Recognition

Author: Homayoon Beigi

Publisher: Springer Science & Business Media

Published: 2011-12-09

Total Pages: 984

ISBN-13: 0387775927

DOWNLOAD EBOOK

An emerging technology, Speaker Recognition is becoming well-known for providing voice authentication over the telephone for helpdesks, call centres and other enterprise businesses for business process automation. "Fundamentals of Speaker Recognition" introduces Speaker Identification, Speaker Verification, Speaker (Audio Event) Classification, Speaker Detection, Speaker Tracking and more. The technical problems are rigorously defined, and a complete picture is made of the relevance of the discussed algorithms and their usage in building a comprehensive Speaker Recognition System. Designed as a textbook with examples and exercises at the end of each chapter, "Fundamentals of Speaker Recognition" is suitable for advanced-level students in computer science and engineering, concentrating on biometrics, speech recognition, pattern recognition, signal processing and, specifically, speaker recognition. It is also a valuable reference for developers of commercial technology and for speech scientists. Please click on the link under "Additional Information" to view supplemental information including the Table of Contents and Index.


Pattern Recognition and Neural Networks

Pattern Recognition and Neural Networks

Author: Brian D. Ripley

Publisher: Cambridge University Press

Published: 2007

Total Pages: 420

ISBN-13: 9780521717700

DOWNLOAD EBOOK

This 1996 book explains the statistical framework for pattern recognition and machine learning, now in paperback.