Error and Inference

Error and Inference

Author: Deborah G. Mayo

Publisher: Cambridge University Press

Published: 2009-10-26

Total Pages: 491

ISBN-13: 1139485369

DOWNLOAD EBOOK

Although both philosophers and scientists are interested in how to obtain reliable knowledge in the face of error, there is a gap between their perspectives that has been an obstacle to progress. By means of a series of exchanges between the editors and leaders from the philosophy of science, statistics and economics, this volume offers a cumulative introduction connecting problems of traditional philosophy of science to problems of inference in statistical and empirical modelling practice. Philosophers of science and scientific practitioners are challenged to reevaluate the assumptions of their own theories - philosophical or methodological. Practitioners may better appreciate the foundational issues around which their questions revolve and thereby become better 'applied philosophers'. Conversely, new avenues emerge for finally solving recalcitrant philosophical problems of induction, explanation and theory testing.


Statistical Inference as Severe Testing

Statistical Inference as Severe Testing

Author: Deborah G. Mayo

Publisher: Cambridge University Press

Published: 2018-09-20

Total Pages: 503

ISBN-13: 1108563309

DOWNLOAD EBOOK

Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.


Error and the Growth of Experimental Knowledge

Error and the Growth of Experimental Knowledge

Author: Deborah G. Mayo

Publisher: University of Chicago Press

Published: 1996-07-15

Total Pages: 520

ISBN-13: 9780226511979

DOWNLOAD EBOOK

Preface1: Learning from Error 2: Ducks, Rabbits, and Normal Science: Recasting the Kuhn's-Eye View of Popper 3: The New Experimentalism and the Bayesian Way 4: Duhem, Kuhn, and Bayes 5: Models of Experimental Inquiry 6: Severe Tests and Methodological Underdetermination7: The Experimental Basis from Which to Test Hypotheses: Brownian Motion8: Severe Tests and Novel Evidence 9: Hunting and Snooping: Understanding the Neyman-Pearson Predesignationist Stance10: Why You Cannot Be Just a Little Bit Bayesian 11: Why Pearson Rejected the Neyman-Pearson (Behavioristic) Philosophy and a Note on Objectivity in Statistics12: Error Statistics and Peircean Error Correction 13: Toward an Error-Statistical Philosophy of Science ReferencesIndex Copyright © Libri GmbH. All rights reserved.


Causal Inference

Causal Inference

Author: Scott Cunningham

Publisher: Yale University Press

Published: 2021-01-26

Total Pages: 585

ISBN-13: 0300255888

DOWNLOAD EBOOK

An accessible, contemporary introduction to the methods for determining cause and effect in the Social Sciences “Causation versus correlation has been the basis of arguments—economic and otherwise—since the beginning of time. Causal Inference: The Mixtape uses legit real-world examples that I found genuinely thought-provoking. It’s rare that a book prompts readers to expand their outlook; this one did for me.”—Marvin Young (Young MC) Causal inference encompasses the tools that allow social scientists to determine what causes what. In a messy world, causal inference is what helps establish the causes and effects of the actions being studied—for example, the impact (or lack thereof) of increases in the minimum wage on employment, the effects of early childhood education on incarceration later in life, or the influence on economic growth of introducing malaria nets in developing regions. Scott Cunningham introduces students and practitioners to the methods necessary to arrive at meaningful answers to the questions of causation, using a range of modeling techniques and coding instructions for both the R and the Stata programming languages.


Error and Inference

Error and Inference

Author: Deborah G. Mayo

Publisher: Cambridge University Press

Published: 2011

Total Pages: 439

ISBN-13: 0521180252

DOWNLOAD EBOOK

Explores the nature of error and inference, drawing on exchanges on experimental reasoning, reliability, and the objectivity of science.


Errors of Reasoning. Naturalizing the Logic of Inference

Errors of Reasoning. Naturalizing the Logic of Inference

Author: John Woods

Publisher:

Published: 2013-07

Total Pages: 572

ISBN-13: 9781848901148

DOWNLOAD EBOOK

Errors of Reasoning is the long-awaited continuation of the author's investigation of the logic of cognitive systems. The present focus is the individual human reasoner operating under the conditions and pressures of real life with capacities and resources the natural world makes available to him. The ensuing logic is thus agent-centred, goal-directed, and time-and-action oriented. It is also as psychologically real a logic as consistent with lawlike regularities of the better-developed empirical sciences of cognition. A point of departure for the book is that good reasoning is typically reasoning that does not meet the orthodox logician's requirements of either deductive validity or the sort of inductive strength sought for by the statistico-empirical sciences. A central objective here is to fashion a logic for this "third-way" reasoning. In so doing, substantial refinements are proposed for mainline treatments of nonmonotonic, defeasible, autoepistemic and default reasoning. A further departure from orthodox orientations is the eschewal of all idealizations short of those required for the descriptive adequacy of the relevant parts of empirical science. Also banned is any unearned assumption of a logic's normative authority to judge inferential behaviour as it actually occurs on the ground. The logic that emerges is therefore a naturalized logic, a proposed transformation of orthodox logics in the manner of the naturalization, more than forty years ago, of the traditional approaches to analytic epistemology. A byproduct of the transformation is the abandonment of justification as a general condition of knowledge, especially in third-way contexts. A test case for this new approach is an account of erroneous reasoning, including inferences usually judged fallacious, that outperforms its rivals in theoretical depth and empirical sensitivity. Errors of Reasoning is required reading in all research communities that seek a realistic understanding of human inference: Logic, formal and informal, AI and the other branches of cognitive science, argumentation theory, and theories of legal reasoning. Indeed the book is a standing challenge to all normatively idealized theories of assessable human performance. John Woods is Director of The Abductive Systems Group at the University of British Columbia, and was formerly the Charles S. Peirce Professor of Logic in the Group on Logic and Computation in the Department of Computer Science, King's College London. He is author of Paradox and Paraconsistency (2003) and with Dov Gabbay, of Agenda Relevance (2003) and The Reach of Abduction (2005). His pathbreaking The Logic of Fiction appeared in 1974, with a second edition by College Publications, 2009.


Statistical Inference

Statistical Inference

Author: George Casella

Publisher: CRC Press

Published: 2024-05-23

Total Pages: 1746

ISBN-13: 1040024025

DOWNLOAD EBOOK

This classic textbook builds theoretical statistics from the first principles of probability theory. Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and natural extensions, and consequences, of previous concepts. It covers all topics from a standard inference course including: distributions, random variables, data reduction, point estimation, hypothesis testing, and interval estimation. Features The classic graduate-level textbook on statistical inference Develops elements of statistical theory from first principles of probability Written in a lucid style accessible to anyone with some background in calculus Covers all key topics of a standard course in inference Hundreds of examples throughout to aid understanding Each chapter includes an extensive set of graduated exercises Statistical Inference, Second Edition is primarily aimed at graduate students of statistics, but can be used by advanced undergraduate students majoring in statistics who have a solid mathematics background. It also stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures, while less focused on formal optimality considerations. This is a reprint of the second edition originally published by Cengage Learning, Inc. in 2001.


Information Theory, Inference and Learning Algorithms

Information Theory, Inference and Learning Algorithms

Author: David J. C. MacKay

Publisher: Cambridge University Press

Published: 2003-09-25

Total Pages: 694

ISBN-13: 9780521642989

DOWNLOAD EBOOK

Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.


Large-Scale Inference

Large-Scale Inference

Author: Bradley Efron

Publisher: Cambridge University Press

Published: 2012-11-29

Total Pages:

ISBN-13: 1139492136

DOWNLOAD EBOOK

We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples.


Causal Inference

Causal Inference

Author: Miquel A. Hernan

Publisher: CRC Press

Published: 2019-07-07

Total Pages: 352

ISBN-13: 9781420076165

DOWNLOAD EBOOK

The application of causal inference methods is growing exponentially in fields that deal with observational data. Written by pioneers in the field, this practical book presents an authoritative yet accessible overview of the methods and applications of causal inference. With a wide range of detailed, worked examples using real epidemiologic data as well as software for replicating the analyses, the text provides a thorough introduction to the basics of the theory for non-time-varying treatments and the generalization to complex longitudinal data.