"Erosion-corrosion is a generic name of degradation phenomena which occur on the chemical plant composing metallic materials under the conditions of various flowing liquids. For example, it occurs on heat transfer pipes of seawater heat exchangers (made of"
A comprehensive exploration of the monitoring, prediction, and prevention of major forms of localized corrosion in complex industrial environments In Localized Corrosion in Complex Environments, distinguished researcher Dr. Mike Yongjun Tan delivers a solution focused approach to localized corrosion issues in complex environments with the potential to affect structural integrity, public safety, environmental protection, or energy and water deliverability. The book focuses on significant civil and industrial infrastructures exposed to complex corrosion environments, like underground and offshore gas, oil, and water pipelines. The author offers information to help ensure the continued safe operation of aging infrastructures and discusses the limitations of current technologies and the need to continuously develop new and more efficient technologies to manage integrity, prevent structural failures, protect the environment, and reduce operational costs. Readers will also find: A thorough introduction to the major issues relevant to infrastructural corrosion issues Comprehensive explorations of issues likely to affect future fuel and energy infrastructures, like hydrogen containing pipelines and offshore and onshore wind farms Practical discussions of recent progress in inspection and monitoring technologies, as well as the protection provided by protective coatings Fulsome treatments of the use of corrosion inhibitors Perfect for materials and corrosion scientists, physical chemists, engineers, regulators, technologists, and environmentalists, Localized Corrosion in Complex Environments will also earn a place in the libraries of corrosion and materials engineers, maintenance engineers, pipeline engineers, field personnel, and anyone responsible for the integrity of production and transmission of oil, gas, and water.
The book addresses the problem of ageing infrastructure and how ageing can reduce the service life below expected levels. The rate of ageing is affected by the type of construction material, environmental exposure, function of the infrastructure, and loading: each of these factors is considered in the assessment of ageing. How do international design codes address ageing? Predictive models of ageing behaviour are available and the different types (empirical, deterministic, and probabilistic) are discussed in a whole-of-life context. Life cycle plans, initiated at the design stage, can ensure that the design life is met, while optimising the management of the asset: reducing life cycle costs and reducing the environmental footprint due to less maintenance/remediation interventions and fewer unplanned stoppages and delays. Health monitoring of infrastructure can be conducted via implanted probes (wired or wireless) or by non-destructive testing that can routinely measure the durability, loading, and exposure environments at key locations around the facility. Routine monitoring can trigger preventative maintenance that can extend the life of the infrastructure and minimise unplanned and reactive remediation, while also providing ongoing data that can be utilised towards more durable future construction. Future infrastructure will need to be safe and durable, financially and environmentally sustainable over the lifecycle, thereby raising socio-economic wellbeing. The book concludes by discussing the key impacting factors that will need to be addressed. The author brings a strong academic and industry background to present a resource for academics and practitioners wishing to address the ageing of built infrastructure.
A variable game changer for those companies operating in hostile, corrosive marine environments, Corrosion Control for Offshore Structures provides critical corrosion control tips and techniques that will prolong structural life while saving millions in cost. In this book, Ramesh Singh explains the ABCs of prolonging structural life of platforms and pipelines while reducing cost and decreasing the risk of failure. Corrosion Control for Offshore Structures places major emphasis on the popular use of cathodic protection (CP) combined with high efficiency coating to prevent subsea corrosion. This reference begins with the fundamental science of corrosion and structures and then moves on to cover more advanced topics such as cathodic protection, coating as corrosion prevention using mill applied coatings, field applications, and the advantages and limitations of some common coating systems. In addition, the author provides expert insight on a number of NACE and DNV standards and recommended practices as well as ISO and Standard and Test Methods. Packed with tables, charts and case studies, Corrosion Control for Offshore Structures is a valuable guide to offshore corrosion control both in terms of its theory and application. - Prolong the structural life of your offshore platforms and pipelines - Understand critical topics such as cathodic protection and coating as corrosion prevention with mill applied coatings - Gain expert insight on a number of NACE and DNV standards and recommended practices as well as ISO and Standard Test Methods.
This textbook is intended for a one-semester course in corrosion science at the graduate or advanced undergraduate level. The approach is that of a physical chemist or materials scientist, and the text is geared toward students of chemistry, materials science, and engineering. This textbook should also be useful to practicing corrosion engineers or materials engineers who wish to enhance their understanding of the fundamental principles of corrosion science. It is assumed that the student or reader does not have a background in electrochemistry. However, the student or reader should have taken at least an undergraduate course in materials science or physical chemistry. More material is presented in the textbook than can be covered in a one-semester course, so the book is intended for both the classroom and as a source book for further use. This book grew out of classroom lectures which the author presented between 1982 and the present while a professorial lecturer at George Washington University, Washington, DC, where he organized and taught a graduate course on “Environmental Effects on Materials.” Additional material has been provided by over 30 years of experience in corrosion research, largely at the Naval Research Laboratory, Washington, DC and also at the Bethlehem Steel Company, Bethlehem, PA and as a Robert A. Welch Postdoctoral Fellow at the University of Texas. The text emphasizes basic principles of corrosion science which underpin extensions to practice.
Reduce the enormous economic and environmental impact of corrosion Emphasizing quantitative techniques, this guide provides you with: *Theory essential for understanding aqueous, atmospheric, and high temperature corrosion processes Corrosion resistance data for various materials Management techniques for dealing with corrosion control, including life prediction and cost analysis, information systems, and knowledge re-use Techniques for the detection, analysis, and prevention of corrosion damage, including protective coatings and cathodic protection More