Let G be a topological group. We construct an equivariant homology and equivariant cohomology theory, defined on the category of all G-pairs and G-maps, which both satisfy all seven equivariant Eilenberg-Steenrod axioms and have a given covariant and contravariant, respectively, coefficient system as coefficients. We also establish some further properties of these equivariant singular homology and cohomology theories, such as, a naturality property in the transformation group, transfer homomorphisms and a cup-product in equivariant singular cohomology with coefficients in a commutative ring coefficient system.
Filling a gap in the literature, this book takes the reader to the frontiers of equivariant topology, the study of objects with specified symmetries. The discussion is motivated by reference to a list of instructive “toy” examples and calculations in what is a relatively unexplored field. The authors also provide a reading path for the first-time reader less interested in working through sophisticated machinery but still desiring a rigorous understanding of the main concepts. The subject’s classical counterparts, ordinary homology and cohomology, dating back to the work of Henri Poincaré in topology, are calculational and theoretical tools which are important in many parts of mathematics and theoretical physics, particularly in the study of manifolds. Similarly powerful tools have been lacking, however, in the context of equivariant topology. Aimed at advanced graduate students and researchers in algebraic topology and related fields, the book assumes knowledge of basic algebraic topology and group actions.
This volume introduces equivariant homotopy, homology, and cohomology theory, along with various related topics in modern algebraic topology. It explains the main ideas behind some of the most striking recent advances in the subject. The works begins with a development of the equivariant algebraic topology of spaces culminating in a discussion of the Sullivan conjecture that emphasizes its relationship with classical Smith theory. The book then introduces equivariant stable homotopy theory, the equivariant stable homotopy category, and the most important examples of equivariant cohomology theories. The basic machinery that is needed to make serious use of equivariant stable homotopy theory is presented next, along with discussions of the Segal conjecture and generalized Tate cohomology. Finally, the book gives an introduction to "brave new algebra", the study of point-set level algebraic structures on spectra and its equivariant applications. Emphasis is placed on equivariant complex cobordism, and related results on that topic are presented in detail.
Cohomology and homology modulo 2 helps the reader grasp more readily the basics of a major tool in algebraic topology. Compared to a more general approach to (co)homology this refreshing approach has many pedagogical advantages: 1. It leads more quickly to the essentials of the subject, 2. An absence of signs and orientation considerations simplifies the theory, 3. Computations and advanced applications can be presented at an earlier stage, 4. Simple geometrical interpretations of (co)chains. Mod 2 (co)homology was developed in the first quarter of the twentieth century as an alternative to integral homology, before both became particular cases of (co)homology with arbitrary coefficients. The first chapters of this book may serve as a basis for a graduate-level introductory course to (co)homology. Simplicial and singular mod 2 (co)homology are introduced, with their products and Steenrod squares, as well as equivariant cohomology. Classical applications include Brouwer's fixed point theorem, Poincaré duality, Borsuk-Ulam theorem, Hopf invariant, Smith theory, Kervaire invariant, etc. The cohomology of flag manifolds is treated in detail (without spectral sequences), including the relationship between Stiefel-Whitney classes and Schubert calculus. More recent developments are also covered, including topological complexity, face spaces, equivariant Morse theory, conjugation spaces, polygon spaces, amongst others. Each chapter ends with exercises, with some hints and answers at the end of the book.
In this work we develop an equivariant Sullivan-Wall surgery exact sequence in the category of smooth and locally linear actions of finite groups which satisfy the gap hypothesis. We then apply this machinery to various problems of classifying group actions on manifolds.
This is an account of the theory of certain types of compact transformation groups, namely those that are susceptible to study using ordinary cohomology theory and rational homotopy theory, which in practice means the torus groups and elementary abelian p-groups. The efforts of many mathematicians have combined to bring a depth of understanding to this area. However to make it reasonably accessible to a wide audience, the authors have streamlined the presentation, referring the reader to the literature for purely technical results and working in a simplified setting where possible. In this way the reader with a relatively modest background in algebraic topology and homology theory can penetrate rather deeply into the subject, whilst the book at the same time makes a useful reference for the more specialised reader.
This book Advances in Modern and Applied Science materializes our long-cherished dream of publishing a series of volumes consisting of review papers on contemporary research fields from a broad spectrum of basic sciences. The present volume, which is our first baby-step towards that fulfilment, includes a collection of twenty-five review articles contributed by about fifty researchers and scientists whose vocations are in diverse fields of science including astrophysics, astronomy, high energy physics, space science, atmospheric sciences, computer sciences to material sciences.
This is a memorial volume to the distinguished Canadian-born mathematician Hugh Dowker, one of the most highly regarded topologists in the United Kingdom and sometime Professor at Birkbeck College, London. The volume comprises specially written articles on various topological topics by experts in many countries who worked with Dowker at one time or another. These include survey, expository and research articles on general topology, algebraic topology and related subjects such as knot theory and graph theory. The volume will be of great interest to graduate students and professional mathematicians whose speciality is topology, in all its aspects.