Introductory Lectures on Equivariant Cohomology

Introductory Lectures on Equivariant Cohomology

Author: Loring W. Tu

Publisher: Princeton University Press

Published: 2020-03-03

Total Pages: 337

ISBN-13: 0691191751

DOWNLOAD EBOOK

This book gives a clear introductory account of equivariant cohomology, a central topic in algebraic topology. Equivariant cohomology is concerned with the algebraic topology of spaces with a group action, or in other words, with symmetries of spaces. First defined in the 1950s, it has been introduced into K-theory and algebraic geometry, but it is in algebraic topology that the concepts are the most transparent and the proofs are the simplest. One of the most useful applications of equivariant cohomology is the equivariant localization theorem of Atiyah-Bott and Berline-Vergne, which converts the integral of an equivariant differential form into a finite sum over the fixed point set of the group action, providing a powerful tool for computing integrals over a manifold. Because integrals and symmetries are ubiquitous, equivariant cohomology has found applications in diverse areas of mathematics and physics. Assuming readers have taken one semester of manifold theory and a year of algebraic topology, Loring Tu begins with the topological construction of equivariant cohomology, then develops the theory for smooth manifolds with the aid of differential forms. To keep the exposition simple, the equivariant localization theorem is proven only for a circle action. An appendix gives a proof of the equivariant de Rham theorem, demonstrating that equivariant cohomology can be computed using equivariant differential forms. Examples and calculations illustrate new concepts. Exercises include hints or solutions, making this book suitable for self-study.


Equivariant Cohomology in Algebraic Geometry

Equivariant Cohomology in Algebraic Geometry

Author: David Anderson

Publisher: Cambridge University Press

Published: 2023-11-30

Total Pages: 463

ISBN-13: 1009349988

DOWNLOAD EBOOK

A graduate-level introduction to the core notions of equivariant cohomology, an indispensable tool in several areas of modern mathematics.


Equivariant Cohomology in Algebraic Geometry

Equivariant Cohomology in Algebraic Geometry

Author: David Anderson

Publisher: Cambridge University Press

Published: 2023-10-26

Total Pages: 464

ISBN-13: 1009349961

DOWNLOAD EBOOK

Intended for first- or second-year graduate students in mathematics, as well as researchers working in algebraic geometry or combinatorics, this text introduces techniques that are essential in several areas of modern mathematics. With numerous exercises and examples, it covers the core notions and applications of equivariant cohomology.


Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31

Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31

Author: Frances Clare Kirwan

Publisher: Princeton University Press

Published: 2020-06-30

Total Pages: 216

ISBN-13: 0691214565

DOWNLOAD EBOOK

These notes describe a general procedure for calculating the Betti numbers of the projective quotient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These quotient varieties are interesting in particular because of their relevance to moduli problems in algebraic geometry. The author describes two different approaches to the problem. One is purely algebraic, while the other uses the methods of symplectic geometry and Morse theory, and involves extending classical Morse theory to certain degenerate functions.


Cohomology Operations and Applications in Homotopy Theory

Cohomology Operations and Applications in Homotopy Theory

Author: Robert E. Mosher

Publisher: Courier Corporation

Published: 2008-01-01

Total Pages: 226

ISBN-13: 0486466647

DOWNLOAD EBOOK

Cohomology operations are at the center of a major area of activity in algebraic topology. This treatment explores the single most important variety of operations, the Steenrod squares. It constructs these operations, proves their major properties, and provides numerous applications, including several different techniques of homotopy theory useful for computation. 1968 edition.


Equivariant Sheaves and Functors

Equivariant Sheaves and Functors

Author: Joseph Bernstein

Publisher: Springer

Published: 2006-11-15

Total Pages: 145

ISBN-13: 3540484302

DOWNLOAD EBOOK

The equivariant derived category of sheaves is introduced. All usual functors on sheaves are extended to the equivariant situation. Some applications to the equivariant intersection cohomology are given. The theory may be useful to specialists in representation theory, algebraic geometry or topology.


Equivariant Cohomology of Configuration Spaces Mod 2

Equivariant Cohomology of Configuration Spaces Mod 2

Author: Pavle V. M. Blagojević

Publisher: Springer

Published: 2021-12-02

Total Pages: 210

ISBN-13: 9783030841379

DOWNLOAD EBOOK

This book gives a brief treatment of the equivariant cohomology of the classical configuration space F(R^d,n) from its beginnings to recent developments. This subject has been studied intensively, starting with the classical papers of Artin (1925/1947) on the theory of braids, and progressing through the work of Fox and Neuwirth (1962), Fadell and Neuwirth (1962), and Arnol'd (1969). The focus of this book is on the mod 2 equivariant cohomology algebras of F(R^d,n), whose additive structure was described by Cohen (1976) and whose algebra structure was studied in an influential paper by Hung (1990). A detailed new proof of Hung's main theorem is given, however it is shown that some of the arguments given by him on the way to his result are incorrect, as are some of the intermediate results in his paper. This invalidates a paper by three of the authors, Blagojević, Lück and Ziegler (2016), who used a claimed intermediate result in order to derive lower bounds for the existence of k-regular and l-skew embeddings. Using the new proof of Hung's main theorem, new lower bounds for the existence of highly regular embeddings are obtained: Some of them agree with the previously claimed bounds, some are weaker. Assuming only a standard graduate background in algebraic topology, this book carefully guides the reader on the way into the subject. It is aimed at graduate students and researchers interested in the development of algebraic topology in its applications in geometry.


Group Cohomology and Algebraic Cycles

Group Cohomology and Algebraic Cycles

Author: Burt Totaro

Publisher: Cambridge University Press

Published: 2014-06-26

Total Pages: 245

ISBN-13: 1107015774

DOWNLOAD EBOOK

This book presents a coherent suite of computational tools for the study of group cohomology algebraic cycles.


Contributions to Algebraic Geometry

Contributions to Algebraic Geometry

Author: Piotr Pragacz

Publisher: European Mathematical Society

Published: 2012

Total Pages: 520

ISBN-13: 9783037191149

DOWNLOAD EBOOK

The articles in this volume are the outcome of the Impanga Conference on Algebraic Geometry in 2010 at the Banach Center in Bedlewo. The following spectrum of topics is covered: K3 surfaces and Enriques surfaces Prym varieties and their moduli invariants of singularities in birational geometry differential forms on singular spaces Minimal Model Program linear systems toric varieties Seshadri and packing constants equivariant cohomology Thom polynomials arithmetic questions The main purpose of the volume is to give comprehensive introductions to the above topics, starting from an elementary level and ending with a discussion of current research. The first four topics are represented by the notes from the mini courses held during the conference. In the articles, the reader will find classical results and methods, as well as modern ones. This book is addressed to researchers and graduate students in algebraic geometry, singularity theory, and algebraic topology. Most of the material in this volume has not yet appeared in book form.


Representation Theories and Algebraic Geometry

Representation Theories and Algebraic Geometry

Author: A. Broer

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 455

ISBN-13: 9401591318

DOWNLOAD EBOOK

The 12 lectures presented in Representation Theories and Algebraic Geometry focus on the very rich and powerful interplay between algebraic geometry and the representation theories of various modern mathematical structures, such as reductive groups, quantum groups, Hecke algebras, restricted Lie algebras, and their companions. This interplay has been extensively exploited during recent years, resulting in great progress in these representation theories. Conversely, a great stimulus has been given to the development of such geometric theories as D-modules, perverse sheafs and equivariant intersection cohomology. The range of topics covered is wide, from equivariant Chow groups, decomposition classes and Schubert varieties, multiplicity free actions, convolution algebras, standard monomial theory, and canonical bases, to annihilators of quantum Verma modules, modular representation theory of Lie algebras and combinatorics of representation categories of Harish-Chandra modules.