Equations of Membrane Biophysics

Equations of Membrane Biophysics

Author: N Lakshminarayanaiah

Publisher: Elsevier

Published: 2013-09-03

Total Pages: 437

ISBN-13: 1483272168

DOWNLOAD EBOOK

Equations of Membrane Biophysics provides an introduction to the relevant principles of thermodynamics, kinetics, electricity, surface chemistry, electrochemistry, and other mathematical theorems so that the quantitative aspects of membrane phenomena in model and biological systems could be described. The book begins by introducing several phenomena that arise across membranes, both artificial and biological, when different driving forces act across them. This is followed by separate chapters on thermodynamic principles related to properties of dilute aqueous electrolyte solutions along with a review of the principles of electrostatics, electrochemical principles, Fick's laws of diffusion, and the rate theory of diffusion; the quantitative aspects of the electrochemistry of solutions and membranes, and the quantitative relations between charges and electrostatic potentials related to surfaces and interfaces; and membrane theories pertaining to electrical potentials arising across a variety of membranes. Subsequent chapters deal with steady-state thermodynamic approaches to several transport phenomena in membranes; tissue impedance, cable theory, and Hodgkin-Huxley equations; and fluctuation analysis of the electrical properties of the membrane.


Thermal Biophysics of Membranes

Thermal Biophysics of Membranes

Author: Thomas Heimburg

Publisher: John Wiley & Sons

Published: 2008-02-08

Total Pages: 378

ISBN-13: 3527611606

DOWNLOAD EBOOK

An overview of recent experimental and theoretical developments in the field of the physics of membranes, including new insights from the past decade. The author uses classical thermal physics and physical chemistry to explain our current understanding of the membrane. He looks at domain and 'raft' formation, and discusses it in the context of thermal fluctuations that express themselves in heat capacity and elastic constants. Further topics are lipid-protein interactions, protein binding, and the effect of sterols and anesthetics. Many seemingly unrelated properties of membranes are shown to be intimately intertwined, leading for instance to a coupling between membrane state, domain formation and vesicular shape. This also applies to non-equilibrium phenomena like the propagation of density pulses during nerve activity. Also included is a discussion of the application of computer simulations on membranes. For both students and researchers of biophysics, biochemistry, physical chemistry, and soft matter physics.


The Physical Chemistry of MEMBRANES

The Physical Chemistry of MEMBRANES

Author: B. Silver

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 413

ISBN-13: 9401096287

DOWNLOAD EBOOK

Ls book is an account of what physical chemistry h . . to say about the structural, electrical and transport properties of biological membranes and their simplest model-the lipid bilayer. The accent throughout is on basic ideas. In contrast to the essentially descriptive ap proach characteristic of texts on membrane biochemistry, our underlying themes are the role of force and entropy in maintaining membrane organization, in determining the electric fields and ionic environment of membranes, and in regulating the passage of molecules and ions across membranes. Although experimental findings will always be the touch stone against which theory will be tried, no attempt is made to present an exhaustive survey of experimental data. On the other hand, there is discussion of the nature and limitations of the results obtainable by the major laboratory techniques. The treatment is at the level of an advanced undergraduate course or an introductory survey suitable for post graduate students carrying out research in biochemistry, biophysics, or physiology. The mathematical demands on the reader are trivial. The few forbidding equations appearing in Chapter 7 are soon whittled away to simple practical expressions. Although the current-voltage characteristics of nerves are traditionally the province of biophysics rather than physical chemistry, certain aspects relevant to the electrical activity of nerves are nevertheless included in this text, namely, mem brane and diffusion potentials and conductivity fluctuations. Where rival theories exist, conflicting convictions have been presented, but not necessarily accorded equal approbation. The author has a viewpoint.


Membrane Biophysics: As Viewed from Experimental Bilayer Lipid Membranes

Membrane Biophysics: As Viewed from Experimental Bilayer Lipid Membranes

Author: H.T. Tien †

Publisher: Elsevier

Published: 2000-01-11

Total Pages: 651

ISBN-13: 0080536166

DOWNLOAD EBOOK

This book summarizes the current status of research on bilayer lipid membranes (planar lipid bilayers and spherical liposomes). In addition to describing the properties of lipid bilayers and examining biomembrane phenomena, the book has two other objectives. The first is to present practical methods for the formation and study of lipid bilayers with either aqueous or metal-lipid bilayer interfaces. The second aim is to treat planar lipid bilayers as a new type of interfacial adsorption phenomena. The first nine chapters cover properties of biomembranes, basic principles of membrane biophysics, transport, electrochemistry, physiology, bioenergetics, and photobiology. Chapter 10 presents the following topics: lipid bilayers in medicine, supported lipid bilayers as sensors, a short discussion of liposomes, and solar energy transduction via semiconductor septum photovoltaic cells based on natural photosynthesis.


Transport And Diffusion Across Cell Membranes

Transport And Diffusion Across Cell Membranes

Author: Wilfred Stein

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 704

ISBN-13: 0323143202

DOWNLOAD EBOOK

Transport and Diffusion across Cell Membranes is a comprehensive treatment of the transport and diffusion of molecules and ions across cell membranes. This book shows that the same kinetic equations (with appropriate modification) can describe all the specialized membrane transport systems: the pores, the carriers, and the two classes of pumps. The kinetic formalism is developed step by step and the features that make a system effective in carrying out its biological role are highlighted. This book is organized into six chapters and begins with an introduction to the structure and dynamics of cell membranes, followed by a discussion on how the membrane acts as a barrier to the transmembrane diffusion of molecules and ions. The following chapters focus on the role of the membrane's protein components in facilitating transmembrane diffusion of specific molecules and ions, measurements of diffusion through pores and the kinetics of diffusion, and the structure of such pores and their biological regulation. This book methodically introduces the reader to the carriers of cell membranes, the kinetics of facilitated diffusion, and cotransport systems. The primary active transport systems are considered, emphasizing the pumping of an ion (sodium, potassium, calcium, or proton) against its electrochemical gradient during the coupled progress of a chemical reaction while a conformational change of the pump enzyme takes place. This book is of interest to advanced undergraduate students, as well as to graduate students and researchers in biochemistry, physiology, pharmacology, and biophysics.


Mathematical Biophysics

Mathematical Biophysics

Author: Andrew Rubin

Publisher: Springer Science & Business Media

Published: 2013-11-26

Total Pages: 274

ISBN-13: 1461487021

DOWNLOAD EBOOK

This book presents concise descriptions and analysis of the classical and modern models used in mathematical biophysics. The authors ask the question "what new information can be provided by the models that cannot be obtained directly from experimental data?" Actively developing fields such as regulatory mechanisms in cells and subcellular systems and electron transport and energy transport in membranes are addressed together with more classical topics such as metabolic processes, nerve conduction and heart activity, chemical kinetics, population dynamics, and photosynthesis. The main approach is to describe biological processes using different mathematical approaches necessary to reveal characteristic features and properties of simulated systems. With the emergence of powerful mathematics software packages such as MAPLE, Mathematica, Mathcad, and MatLab, these methodologies are now accessible to a wide audience.


Biophysics

Biophysics

Author: Patrick F. Dillon

Publisher: Cambridge University Press

Published: 2012-01-19

Total Pages: 315

ISBN-13: 1107001447

DOWNLOAD EBOOK

They are each directed toward the understanding of a biological principle, with a particular emphasis on human biology.


The Biophysics of Cell Membranes

The Biophysics of Cell Membranes

Author: Richard M. Epand

Publisher: Springer

Published: 2017-09-25

Total Pages: 224

ISBN-13: 9811062447

DOWNLOAD EBOOK

This volume focuses on the modulation of biological membranes by specific biophysical properties. The readers are introduced to emerging biophysical approaches that mimick specific states (like membrane lipid asymmetry, membrane curvature, lipid flip-flop, lipid phase separation) that are relevant to the functioning of biological membranes. The first chapter describes innovative methods to mimic the prevailing asymmetry in biological membranes by forming asymmetrical membranes made of monolayers with different compositions. One of the chapters illustrates how physical parameters, like curvature and elasticity, can affect and modulate the interactions between lipids and proteins. This volume also describes the sensitivity of certain ion channels to mechanical forces and it presents an analysis of how cell shape is determined by both the cytoskeleton and the lipid domains in the membrane. The last chapter provides evidence that liposomes can be used as a minimal cellular model to reconstitute processes related to the origin of life. Each topic covered in this volume is presented by leading experts in the field who are able to present clear, authoritative and up-to-date reviews. The novelty of the methods proposed and their potential for a deeper molecular description of membrane functioning are particularly relevant experts in the areas of biochemistry, biophysics and cell biology, while also presenting clear and thorough introductions, making the material suitable for students in these fields as well.


Neuronal Dynamics

Neuronal Dynamics

Author: Wulfram Gerstner

Publisher: Cambridge University Press

Published: 2014-07-24

Total Pages: 591

ISBN-13: 1107060834

DOWNLOAD EBOOK

This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.


Cellular Biophysics and Modeling

Cellular Biophysics and Modeling

Author: Greg Conradi Smith

Publisher: Cambridge University Press

Published: 2019-03-14

Total Pages: 395

ISBN-13: 1107005361

DOWNLOAD EBOOK

What every neuroscientist should know about the mathematical modeling of excitable cells, presented at an introductory level.