Groundwater is an increasingly important resource to human populations around the world, and the study and protection of groundwater is an essential part of hydrogeology - the subset of hydrology that concentrates on the subsurface. Environmental isotopes, naturally occurring nuclides in water and solutes, have become fundamental tools for tracing
Groundwater is an increasingly important resource to human populations around the world, and the study and protection of groundwater is an essential part of hydrogeology - the subset of hydrology that concentrates on the subsurface. Environmental isotopes, naturally occurring nuclides in water and solutes, have become fundamental tools for tracing the recharge, history, and contamination of groundwater.
Within the realm of the newly evolving discipline of environmental sciences, the stable-isotope methodology is being used to an ever-increasing extent, especially in the study of the water cycle and of paleo-climatology. This book introduces the rules of the game, by reviewing the natural variability of stable isotopes in the hydrosphere, describing the physico-chemical basis of isotope fractionation, and applying this knowledge to natural waters as they move through the hydrologic cycle from the ocean to the atmosphere, the biosphere and the lithosphere. There is a special focus on the processes at the surface?atmosphere and land?biosphere?atmosphere interfaces, since these are the sites of major changes in isotope composition. In response to the increasing awareness of our changing climate, a discussion on the global view of the changing water cycle, in the past and future, winds up the presentation.
This book covers the distribution, hydrochemistry and geophysics of the naturally occurring stable isotopes namely: hydrogen, oxygen and radioactive tritium, carbon and other cosmogenic and radiogenic isotopes of the uranium-thorium series, in the oceans and in atmosphere, the earth's surface and ground water. The use of environmental isotopes in the three main areas of natural waters is discussed: origin, dynamics and residence time in natural reservoirs. The origin of the hydrosphere is examined in the light of isotopic, new cosmochemical and recent theoretical results. The book will be of interest to scientists and researchers who use environmental isotopes in solving scientific and practical problems in hydrology, hydrogeology, oceanography, meteorology, hydrogeochemistry and cosmochemistry. Lecturers, students and postgraduates in these fields will also find it useful.
Environmental isotope and nuclear techniques provide unmatched insights into the processes governing the water cycle and its variability. This monograph presents state of the art applications and new developments of isotopes in hydrology, environmental disciplines and climate change studies. Coverage ranges from the assessment of groundwater resources in terms of recharge and flow regime to studies of the past and present global environmental and climate changes.
Environmental Tracers in Subsurface Hydrology synthesizes the research of specialists into a comprehensive review of the application of environmental tracers to the study of soil water and groundwater flow. The book includes chapters which cover ionic tracers, noble gases, chlorofluorocarbons, tritium, chlorine-36, oxygen-18, deuterium, and isotopes of carbon, strontium, sulphur and nitrogen. Applications of the tracers include the estimation of vertical and horizontal groundwater velocities, groundwater recharge rates, inter-aquifer leakage and mixing processes, chemical processes and palaeohydrology. Practicing hydrologists, soil physicists and hydrology professors and students will find the book to be a valuable support in their work.
Hydrogeology: Principles and Practice provides a comprehensive introduction to the study of hydrogeology to enable the reader to appreciate the significance of groundwater in meeting current and future water resource challenges. This new edition has been thoroughly updated to reflect advances in the field since 2004. The book presents a systematic approach to understanding groundwater. Earlier chapters explain the fundamental physical and chemical principles of hydrogeology, and later chapters feature groundwater investigation techniques in the context of catchment processes, as well as chapters on groundwater quality and contaminant hydrogeology. Unique features of the book are chapters on the applications of environmental isotopes and noble gases in the interpretation of aquifer evolution, and on regional characteristics such as topography, compaction and variable fluid density in the explanation of geological processes affecting past, present and future groundwater flow regimes. The last chapter discusses groundwater resources and environmental management, and examines the role of groundwater in integrated river basin management, including an assessment of possible adaptation responses to the impacts of climate change. Throughout the text, boxes and a set of colour plates drawn from the authors’ teaching and research experience are used to explain special topics and to illustrate international case studies ranging from transboundary aquifers and submarine groundwater discharge to the over-pressuring of groundwater in sedimentary basins. The appendices provide conversion tables and useful reference material, and include review questions and exercises, with answers, to help develop the reader’s knowledge and problem-solving skills in hydrogeology. This accessible textbook is essential reading for undergraduate and graduate students primarily in earth sciences, environmental sciences and physical geography with an interest in hydrogeology or groundwater science. The book will also find use among practitioners in hydrogeology, soil science, civil engineering and planning who are involved in environmental and resource protection issues requiring an understanding of groundwater. Additional resources can be found at: www.wiley.com/go/hiscock/hydrogeology
There remains a lack of understanding of environmental isotopes and their use; students and practitioners typically find the concepts of isotope concentrations and partitioning to be more complicated than for geochemistry. However, this need not be so, if the basics are presented together with geochemistry, using case studies and examples to make the point. This new book presents the basics of environmental isotopes and geochemistry together, with case studies and simple examples that build a real understanding of their use in natural and contaminated groundwater.
This book represents a new "earth systems" approach to catchments that encompasses the physical and biogeochemical interactions that control the hydrology and biogeochemistry of the system. The text provides a comprehensive treatment of the fundamentals of catchment hydrology, principles of isotope geochemistry, and the isotope variability in the hydrologic cycle -- but the main focus of the book is on case studies in isotope hydrology and isotope geochemistry that explore the applications of isotope techniques for investigating modern environmental problems. Isotope Tracers in Catchment Hydrology is the first synthesis of physical hydrology and isotope geochemistry with catchment focus, and is a valuable reference for professionals and students alike in the fields of hydrology, hydrochemistry, and environmental science. This important interdisciplinary text provides extensive guidelines for the application of isotope techniques for all investigatores facing the challenge of protecting precious water, soil, and ecological resources from the ever-increasing problems associated with population growth and environmental change, including those from urban development and agricultural land uses.