Entropy Methods for Diffusive Partial Differential Equations

Entropy Methods for Diffusive Partial Differential Equations

Author: Ansgar Jüngel

Publisher: Springer

Published: 2016-06-17

Total Pages: 146

ISBN-13: 3319342193

DOWNLOAD EBOOK

This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars.


Nonlinear Partial Differential Equations and Related Analysis

Nonlinear Partial Differential Equations and Related Analysis

Author: Gui-Qiang Chen

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 336

ISBN-13: 0821835335

DOWNLOAD EBOOK

The Emphasis Year on Nonlinear Partial Differential Equations and Related Analysis at Northwestern University produced this fine collection of original research and survey articles. Many well-known mathematicians attended the events and submitted their contributions for this volume. Eighteen papers comprise this work, representing the most significant advances and current trends in nonlinear PDEs and their applications. Topics covered include elliptic and parabolic equations, NavierStokes equations, and hyperbolic conservation laws. Important applications are presented from incompressible and compressible fluid mechanics, combustion, and electromagnetism. Also included are articles on recent advances in statistical reliability in modeling, simulation, level set methods forimage processing, shock waves, free boundaries, boundary layers, errors in numerical solutions, stability, instability, and singular limits. The volume is suitable for researchers and graduate students interested in partial differential equations.


Partial Differential Equations in Action

Partial Differential Equations in Action

Author: Sandro Salsa

Publisher: Springer

Published: 2015-04-24

Total Pages: 714

ISBN-13: 3319150936

DOWNLOAD EBOOK

The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.


Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1

Author: Jens M. Melenk

Publisher: Springer Nature

Published: 2023-06-30

Total Pages: 571

ISBN-13: 3031204328

DOWNLOAD EBOOK

The volume features high-quality papers based on the presentations at the ICOSAHOM 2020+1 on spectral and high order methods. The carefully reviewed articles cover state of the art topics in high order discretizations of partial differential equations. The volume presents a wide range of topics including the design and analysis of high order methods, the development of fast solvers on modern computer architecture, and the application of these methods in fluid and structural mechanics computations.


Statistics and Simulation

Statistics and Simulation

Author: Jürgen Pilz

Publisher: Springer

Published: 2018-05-17

Total Pages: 412

ISBN-13: 3319760351

DOWNLOAD EBOOK

This volume features original contributions and invited review articles on mathematical statistics, statistical simulation and experimental design. The selected peer-reviewed contributions originate from the 8th International Workshop on Simulation held in Vienna in 2015. The book is intended for mathematical statisticians, Ph.D. students and statisticians working in medicine, engineering, pharmacy, psychology, agriculture and other related fields. The International Workshops on Simulation are devoted to statistical techniques in stochastic simulation, data collection, design of scientific experiments and studies representing broad areas of interest. The first 6 workshops took place in St. Petersburg, Russia, in 1994 – 2009 and the 7th workshop was held in Rimini, Italy, in 2013.


Splitting Methods for Partial Differential Equations with Rough Solutions

Splitting Methods for Partial Differential Equations with Rough Solutions

Author: Helge Holden

Publisher: European Mathematical Society

Published: 2010

Total Pages: 238

ISBN-13: 9783037190784

DOWNLOAD EBOOK

Operator splitting (or the fractional steps method) is a very common tool to analyze nonlinear partial differential equations both numerically and analytically. By applying operator splitting to a complicated model one can often split it into simpler problems that can be analyzed separately. In this book one studies operator splitting for a family of nonlinear evolution equations, including hyperbolic conservation laws and degenerate convection-diffusion equations. Common for these equations is the prevalence of rough, or non-smooth, solutions, e.g., shocks. Rigorous analysis is presented, showing that both semi-discrete and fully discrete splitting methods converge. For conservation laws, sharp error estimates are provided and for convection-diffusion equations one discusses a priori and a posteriori correction of entropy errors introduced by the splitting. Numerical methods include finite difference and finite volume methods as well as front tracking. The theory is illustrated by numerous examples. There is a dedicated Web page that provides MATLABR codes for many of the examples. The book is suitable for graduate students and researchers in pure and applied mathematics, physics, and engineering.


Spectral and High Order Methods for Partial Differential Equations

Spectral and High Order Methods for Partial Differential Equations

Author: Jan S. Hesthaven

Publisher: Springer Science & Business Media

Published: 2010-10-29

Total Pages: 507

ISBN-13: 3642153372

DOWNLOAD EBOOK

The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2009), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliography.


Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples

Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples

Author: Robert Klöfkorn

Publisher: Springer Nature

Published: 2020-06-09

Total Pages: 727

ISBN-13: 3030436519

DOWNLOAD EBOOK

The proceedings of the 9th conference on "Finite Volumes for Complex Applications" (Bergen, June 2020) are structured in two volumes. The first volume collects the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Topics covered include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. Altogether, a rather comprehensive overview is given on the state of the art in the field. The properties of the methods considered in the conference give them distinguished advantages for a number of applications. These include fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory, carbon capture utilization and storage, geothermal energy and further topics. The second volume covers reviewed contributions reporting successful applications of finite volume and related methods in these fields. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability, making the finite volume methods compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. The book is a valuable resource for researchers, PhD and master’s level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as engineers working in numerical modeling and simulations.


From Particle Systems to Partial Differential Equations II

From Particle Systems to Partial Differential Equations II

Author: Patrícia Gonçalves

Publisher: Springer

Published: 2015-04-04

Total Pages: 395

ISBN-13: 3319166379

DOWNLOAD EBOOK

This book focuses on mathematical problems concerning different applications in physics, engineering, chemistry and biology. It covers topics ranging from interacting particle systems to partial differential equations (PDEs), statistical mechanics and dynamical systems. The purpose of the second meeting on Particle Systems and PDEs was to bring together renowned researchers working actively in the respective fields, to discuss their topics of expertise and to present recent scientific results in both areas. Further, the meeting was intended to present the subject of interacting particle systems, its roots in and impacts on the field of physics and its relation with PDEs to a vast and varied public, including young researchers. The book also includes the notes from two mini-courses presented at the conference, allowing readers who are less familiar with these areas of mathematics to more easily approach them. The contributions will be of interest to mathematicians, theoretical physicists and other researchers interested in interacting particle systems, partial differential equations, statistical mechanics, stochastic processes, kinetic theory, dynamical systems and mathematical modeling aspects.


From Particle Systems to Partial Differential Equations

From Particle Systems to Partial Differential Equations

Author: Cédric Bernardin

Publisher: Springer Nature

Published: 2021-05-30

Total Pages: 400

ISBN-13: 3030697843

DOWNLOAD EBOOK

This book includes the joint proceedings of the International Conference on Particle Systems and PDEs VI, VII and VIII. Particle Systems and PDEs VI was held in Nice, France, in November/December 2017, Particle Systems and PDEs VII was held in Palermo, Italy, in November 2018, and Particle Systems and PDEs VIII was held in Lisbon, Portugal, in December 2019. Most of the papers are dealing with mathematical problems motivated by different applications in physics, engineering, economics, chemistry and biology. They illustrate methods and topics in the study of particle systems and PDEs and their relation. The book is recommended to probabilists, analysts and to those mathematicians in general, whose work focuses on topics in mathematical physics, stochastic processes and differential equations, as well as to those physicists who work in statistical mechanics and kinetic theory.