The nine papers in this volume cover the geology beneath Washington, D.C., Boston, Chicago, Edmonton, Kansas City, New Orleans, New York City, Toronto, and St. Paul/Minneapolis, and present methods of data gathering that could be used in most cities.
The field of geoengineering is at a crossroads where the path to high-tech solutions meets the path to expanding applications of geotechnology. In this report, the term "geoengineering" includes all types of engineering that deal with Earth materials, such as geotechnical engineering, geological engineering, hydrological engineering, and Earth-related parts of petroleum engineering and mining engineering. The rapid expansion of nanotechnology, biotechnology, and information technology begs the question of how these new approaches might come to play in developing better solutions for geotechnological problems. This report presents a vision for the future of geotechnology aimed at National Science Foundation (NSF) program managers, the geological and geotechnical engineering community as a whole, and other interested parties, including Congress, federal and state agencies, industry, academia, and other stakeholders in geoengineering research. Some of the ideas may be close to reality whereas others may turn out to be elusive, but they all present possibilities to strive for and potential goals for the future. Geoengineers are poised to expand their roles and lead in finding solutions for modern Earth systems problems, such as global change, emissions-free energy supply, global water supply, and urban systems.
Winner of the 2004 Claire P. Holdredge Award of the Association of Engineering Geologists (USA). The only book to concentrate on the relationship between geology and its implications for construction, this book covers the full scope of the subject from site investigation through to the complexities of reservoirs and dam sites. Features include international case studies throughout, and summaries of accepted practice, plus sections on waste disposal, and contaminated land.
This fourth volume of five from the June 1997 conference was much delayed (the first four volumes were published in 1997). It comprises 23 special lectures solicited for the conference on various aspects of problematic soils, natural and man-made hazards, urban and regional planning, waste disposal, mines and quarries, large engineering works, and protection of geological, geographical, historical, and architectural heritage. There is no subject index. Annotation copyrighted by Book News Inc., Portland, OR
Every engineering structure, whether it's a building, bridge or road, is affected by the ground on which it is built. Geology is of fundamental importance when deciding on the location and design of all engineering works, and it is essential that engineers have a basic knowledge of the subject. Engineering Geology introduces the fundamentals of the discipline and ensures that engineers have a clear understanding of the processes at work, and how they will impact on what is to be built. Core areas such as stratigraphy, rock types, structures and geological processes are explained, and put in context. The basics of soil mechanics and the links between groundwater conditions and underlying geology are introduced. As well as the theoretical knowledge necessary, Professor Bell introduces the techniques that engineers will need to learn about and understand the geological conditions in which they intend to build. Site investigation techniques are detailed, and the risks and risk avoidance methods for dealing with different conditions are explained. - Accessible introduction to geology for engineers - Key points illustrated with diagrams and photographs - Teaches the impact of geology on the planning and design of structures
Professionals and students in any geology-related field will find this an essential reference. It clearly and systematically explains underground engineering geology principles, methods, theories and case studies. The authors lay out engineering problems in underground rock engineering and how to study and solve them. The book specially emphasizes mechanical and hydraulic couplings in rock engineering for wellbore stability, mining near aquifers and other underground structures where inflow is a problem.
A collection of papers discussing the relations between the geologic setting and the design of slopes in the Potomac formation in Fairfax County, Va., and vicinity.