This e-book discusses methods that businesses may employ to reduce energy costs related to managing industrial buildings through environmentally sustainable methods. There are several chapters covering various aspects of energy assessments and each chapter is linked to case histories that are given in the appendix. The chapters cover energy efficient methods for managing lighting, insulation, machines, air conditioning and much more. Information needed during the assessment process is also supplemented in tables. Readers who wish to gain a better understanding of[] the many ways to reduce energy consumption can benefit from this book.
Procedures for Commercial Building Energy Audits provides purchasers and providers of energy audit services with a complete definition of good procedures for an energy survey and analysis. It also provides a format for defining buildings and their energy use that will allow data to be shared in meaningful ways. This publication specifically avoids a "cookbook" approach, recognizing that all buildings are different and each analyst needs to exercise a substantial amount of judgment. Instead, Procedures sets out generalized procedures to guide the analyst and the building owner, and provides a uniform method of reporting basic information. Different levels of analysis are organized into the following categories:Preliminary Energy Use Analysis Level I Analysis "Walk-Through Analysis Level II Analysis"Energy Survey and Analysis Level III Analysis"Detailed Analysis of Capital-Intensive Modifications The book comes with a CD that provides more than 25 guideline forms, with explanatory material, to illustrate the content and arrangement of a complete, effective energy analysis report. The CD provides these forms in both PDF and Word format, enabling you to customize and print each form. For the downloadable version, the PDF of the book and the guideline forms are included in a single .zip file. You will need WinZip or an equivalent program to open the file. ASHRAE Research Project 669 and ASHRAE Special Project 56.
An authoritative and comprehensive guide to managing energy conservation in infrastructures Energy Conservation in Residential, Commercial, and Industrial Facilities offers an essential guide to the business models and engineering design frameworks for the implementation of energy conservation in infrastructures. The presented models of both physical and technological systems can be applied to a wide range of structures such as homes, hotels, public facilities, industrial facilities, transportation, and water/energy supply systems. The authors—noted experts in the field—explore the key performance indicators that are used to evaluate energy conservation strategies and the energy supply scenarios as part of the design and operation of energy systems in infrastructures. The text is based on a systems approach that demonstrates the effective management of building energy knowledge and supports the simulation, evaluation, and optimization of several building energy conservation scenarios. In addition, the authors explore new methods of developing energy semantic network (ESN) superstructures, energy conservation optimization techniques, and risk-based life cycle assessments. This important text: Defines the most effective ways to model the infrastructure of physical and technological systems Includes information on the most widely used techniques in the validation and calibration of building energy simulation Offers a discussion of the sources, quantification, and reduction of uncertainty Presents a number of efficient energy conservation strategies in infrastructure systems, including HVAC, lighting, appliances, transportation, and industrial facilities Describes illustrative case studies to demonstrate the proposed energy conservation framework, practices, methods, engineering designs, control, and technologies Written for students studying energy conservation as well as engineers designing the next generation of buildings, Energy Conservation in Residential, Commercial, and Industrial Facilities offers a wide-ranging guide to the effective management of energy conservation in infrastructures.
Updated to include recent advances, this third edition presents strategies and analysis methods for conserving energy and reducing operating costs in residential and commercial buildings. The book explores the latest approaches to measuring and improving energy consumption levels, with calculation examples and Case Studies. It covers field testing, energy simulation, and retrofit analysis of existing buildings. It examines subsystems—such as lighting, heating, and cooling—and techniques needed for accurately evaluating them. Auditors, managers, and students of energy systems will find this book to be an invaluable resource for their work. Explores state-of-the-art techniques and technologies for reducing energy combustion in buildings. Presents the latest energy efficiency strategies and established methods for energy estimation. Provides calculation examples that outline the application of the methods described. Examines the major building subsystems: lighting, heating, and air-conditioning. Addresses large-scale retrofit analysis approaches for existing building stocks. Introduces the concept of energy productivity to account for the multiple benefits of energy efficiency for buildings. Includes Case Studies to give readers a realistic look at energy audits. Moncef Krarti has vast experience in designing, testing, and assessing innovative energy efficiency and renewable energy technologies applied to buildings. He graduated from the University of Colorado with both MS and PhD in Civil Engineering. Prof. Krarti directed several projects in designing energy-efficient buildings with integrated renewable energy systems. He has published over 3000 technical journals and handbook chapters in various fields related to energy efficiency, distribution generation, and demand-side management for the built environment. Moreover, he has published several books on building energy-efficient systems. Prof. Krarti is Fellow member to the American Society for Mechanical Engineers (ASME), the largest international professional society. He is the founding editor of the ASME Journal of Sustainable Buildings & Cities Equipment and Systems. Prof. Krarti has taught several different courses related to building energy systems for over 20 years in the United States and abroad. As a professor at the University of Colorado, Prof. Krarti has been managing the research activities of an energy management center at the school with an emphasis on testing and evaluating the performance of mechanical and electrical systems for residential and commercial buildings. He has also helped the development of similar energy efficiency centers in other countries, including Brazil, Mexico, and Tunisia. In addition, Prof. Krarti has extensive experience in promoting building energy technologies and policies overseas, including the establishment of energy research centers, the development of building energy codes, and the delivery of energy training programs in several countries.
Energy audits have multiple goals including reducing energy consumption, managing costs and environmental impact. Improving the energy performance of existing buildings through energy retrofit measures is a great opportunity for developing sustainability in our structures and developing a green building economy. Green Energy Audit of Buildings considers this opportunity with a new and modern interpretation of the classic methodologies. This comprehensive guide to green energy audits integrates energy audit and LEED® methodologies to focus on energy and environment as strategic elements. In addition to these methodologies, Green Energy Audit of Buildings includes 45 check-list for field surveys and 97 technical sheets of possible energy retrofit actions that can be applied to existing real-world cases. Covering both the technical and economical points of view, Green Energy Audit of Buildings provides a comprehensive understanding and method for analyzing buildings and facilities in order to promote sustainability. Engineers, architects, energy assessors and mangers in charge of building maintenance will all find this a key reference as well as lecturers, students and researchers looking to develop their understanding of sustainable buildings.
Introduction to Industrial Energy Efficiency: Energy Auditing, Energy Management, and Policy Issues offers a systemic overview of all key-aspects involved in improving industrial energy efficiency in various industry sectors. It is organized in three parts, each dealing with a particular perspective needed to form a complete view of related issues. Sections focus on energy auditing and improved energy efficiency of companies from a predominantly technical perspective, shed light on energy management and factors that hinder or drive the adoption of energy efficiency practices in the manufacturing industry, and explore energy efficiency policy instruments and how they are designed, implemented and evaluated. Practicing engineers in the field of energy efficiency, engineering and energy researchers coming into the field, and graduate students will find this book to be an invaluable reference on the fundamental knowledge they need to get started in this area. - Provides, in one volume, a comprehensive overview of energy systems efficiency and management that is applied to various industrial processes - Explores operational measures for improvement, including case studies from varying countries and sectors - Discusses the barriers to, and driving forces for, improving energy efficiency in industrial settings, including technical, behavioral, organizational and policy aspects