Here is the most complete reference ever developed for identifying quantity and quality of industrial waste energy which may be economically practical to recover. Based on years of research, the detailed heat and material balances which are presented were developed from process flow diagrams of 108 industrial processes, with technical input from consultants and manufacturers, and extensive on-site verification studies. Data such as process temperature, pressure, fuel requirements, thermal efficiency and radiation, and convection losses are determined for varying industrial operations spanning the food products, textile, lumber and wood, paper, chemical, petroleum, rubber and plastics, glass, metals, machinery, transportation equipment, and instrument manufacturing industries.
Comprehensive Energy Systems, Seven Volume Set provides a unified source of information covering the entire spectrum of energy, one of the most significant issues humanity has to face. This comprehensive book describes traditional and novel energy systems, from single generation to multi-generation, also covering theory and applications. In addition, it also presents high-level coverage on energy policies, strategies, environmental impacts and sustainable development. No other published work covers such breadth of topics in similar depth. High-level sections include Energy Fundamentals, Energy Materials, Energy Production, Energy Conversion, and Energy Management. Offers the most comprehensive resource available on the topic of energy systems Presents an authoritative resource authored and edited by leading experts in the field Consolidates information currently scattered in publications from different research fields (engineering as well as physics, chemistry, environmental sciences and economics), thus ensuring a common standard and language
The three-volume handbook showcases the state of the art in the use of concentrated sunlight to produce electricity, industrial process heat, renewable fuels, including hydrogen and low-carbon synthesis gas, and valuable chemical commodities. The handbook illustrates the value and diversity of applications for concentrating solar power to contribute to the expanding decarbonization of multiple cross-cutting energy sectors.Volume 1: Concentrating Solar Thermal Power, provides an overview of key technologies, principles, and challenges of concentrating solar power (CSP) as well as the use of concentrating solar thermal for process heating and district markets. The ten chapters of this volume provide the reader with the technical background on the solar resource for concentrating solar thermal, the principles and design of concentrating optics, and descriptions of state-of-the-art and emerging solar collector and receiver technologies, thermal storage and thermal-to-electric conversion and power cycles for CSP. It also contains a comprehensive summary of operations and maintenance requirements for CSP plants, and commercial CSP plants and markets around the world.Volume 2, Solar Thermochemical Processes and Products, covers the use of concentrated solar radiation as the heat source to drive endothermic chemical reactions to produce renewable fuels and valuable chemical commodities, equivalently storing solar energy in chemical bonds. The thermodynamic underpinnings of a number of approaches to produce fuel and results of demonstrations of solar thermochemical reactors for these processes at prototype scale are presented. Processes presented include thermochemical metal oxide reduction/oxidation cycles to split water and carbon dioxide solar chemical looping reformation of methane to produce synthesis gas, high temperature electrochemistry, and gasification of biomass. Research on the thermochemical storage for CSP and high temperature production of cement and ammonia to illustrate the use concentrated solar energy to produce valuable chemical products are also included.Volume 3 contains reprinted archival papers to support and supplement the material in Volumes 1 and 2. These papers provide background information on the economics and alternative use cases of CSP not covered in Volume 1, and expand on the material related to the chapter topics presented in Volume 2. Potential commercialization, such as prototype and demonstration projects, are highlighted. The papers are intended as a starting point for a more in-depth study of the topics.
The world has witnessed several revolutions since the dawn of industrial revolution some two centuries ago. During the current century itself, three revolutions in the area of communication, information processing and quality have taken place and each time the standard of living of man improved beyond predictions. But during the same period, the world population has also phenomenally increased dwarfing the gains achieved from the development. Increased level of industrial activity to meet the of humanity has caused irreversible damage to the pristine environment that the demand Earth once had. Economic disparity between the haves and havenots has widened, aggravating the situation further more. Ozone layer depletion, warming up of Earth's atmosphere and the pollution created by uncontrolled industrial activity to gain economic strength are now assuming the proportion of a catastrophe that may eventually threaten the survival of life on Earth. Developed countries blame the Third World countries for the uncontrolled emissions through burning of fossil fuels and for wasting precious resources of energy by using inefficient and uneconomical technologies, while the developed countries are equally responsible for avoidable oV,er-consumption and for the wastage of resources and energy and for not sharing the improved and efficient technologies with the developing countries. Thus the wastage by both these set of countries continues unabated. After all, resources of the world are finite and are meant to be shared by all its inhabitants.
This book does not give a prediction of what the efficiency will be of the energy use of industrial processes in the future. However, it does give an exploration of limits to the efficiency of current processes and an indication of what might be achieved if new technologies can be developed. At the Department of Science, Technology and Society of Utrecht University research had been done to the opportunities for improvement of the energy efficiency in the short term since the 1980's. This had resulted in a comprehensive database on energy efficient measures. This database and a possible application are described in Chapter 3 of this book. The use of the database induced new research themes around efficiency improvement, e.g. concerning barriers for implementation of measures. It was around 1993 that I did a preliminary study to the potential for efficiency improvement in the long term. Historical analysis had shown us that the short term potential stayed constant over the years. It seemed to be replenished by the introduction of new technologies. This lead to the question whether there are limits to the efficiency, taking into account both thermodynamic considerations and ideas on the development and dissemination of new technologies.
Hotter temperatures, less arctic ice, loss of habitat-every other day, it seems, global warming and environmental issues make headlines. Consumer-driven environmental awareness combined with stricter recycling regulations have put the pressure on companies to produce and dispose of products in an environmentally responsible manner. Redefining indus
This book provides a deep insight into the energy usage in the energy intensive metal industry and the methodology for efficiency assessment. Various methodologies for energy audits are described, along with concept-level analysis for minimum energy design. Apart from the technical and engineering analysis, the book also describes management aspects such as energy management systems and financial, environmental and social analysis leading to the development of a comprehensive plan for implementation of energy efficiency and conservation in industries. Barriers to investment in energy efficiency and conservation are discussed, based on review of global and Indian case studies. FEATURES: Details fundamental principles driving energy consumption in an industrial set-up backed with illustrative examples Explains various alternative methods for discovery of energy efficiency and conservation projects. Focusses on metal-producing and -processing facilities with an emphasis on environmental quality Supports maximum digitalization of energy audit assessment and report preparation processes Includes global case studies and tutorials at the end of the corresponding chapters This book is useful for researchers, professionals and graduate students in thermodynamics, manufacturing, thermal engineering, energy engineering, energy efficiency and energy processes, especially in the metal industry.