Encyclopedia of Special Functions: The Askey-Bateman Project: Volume 2, Multivariable Special Functions

Encyclopedia of Special Functions: The Askey-Bateman Project: Volume 2, Multivariable Special Functions

Author: Tom H. Koornwinder

Publisher: Cambridge University Press

Published: 2020-10-15

Total Pages: 442

ISBN-13: 1108916554

DOWNLOAD EBOOK

This is the second of three volumes that form the Encyclopedia of Special Functions, an extensive update of the Bateman Manuscript Project. Volume 2 covers multivariable special functions. When the Bateman project appeared, study of these was in an early stage, but revolutionary developments began to be made in the 1980s and have continued ever since. World-renowned experts survey these over the course of 12 chapters, each containing an extensive bibliography. The reader encounters different perspectives on a wide range of topics, from Dunkl theory, to Macdonald theory, to the various deep generalizations of classical hypergeometric functions to the several variables case, including the elliptic level. Particular attention is paid to the close relation of the subject with Lie theory, geometry, mathematical physics and combinatorics.


Encyclopedia of Special Functions: The Askey-Bateman Project

Encyclopedia of Special Functions: The Askey-Bateman Project

Author: Tom H. Koornwinder

Publisher: Cambridge University Press

Published: 2020-10-15

Total Pages: 0

ISBN-13: 9781107003736

DOWNLOAD EBOOK

This is the second of three volumes that form the Encyclopedia of Special Functions, an extensive update of the Bateman Manuscript Project. Volume 2 covers multivariable special functions. When the Bateman project appeared, study of these was in an early stage, but revolutionary developments began to be made in the 1980s and have continued ever since. World-renowned experts survey these over the course of 12 chapters, each containing an extensive bibliography. The reader encounters different perspectives on a wide range of topics, from Dunkl theory, to Macdonald theory, to the various deep generalizations of classical hypergeometric functions to the several variables case, including the elliptic level. Particular attention is paid to the close relation of the subject with Lie theory, geometry, mathematical physics and combinatorics.


Special Functions

Special Functions

Author: George E. Andrews

Publisher: Cambridge University Press

Published: 1999

Total Pages: 684

ISBN-13: 9780521789882

DOWNLOAD EBOOK

An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.


Orthogonal Polynomials of Several Variables

Orthogonal Polynomials of Several Variables

Author: Charles F. Dunkl

Publisher: Cambridge University Press

Published: 2014-08-21

Total Pages: 439

ISBN-13: 1107071895

DOWNLOAD EBOOK

Updated throughout, this revised edition contains 25% new material covering progress made in the field over the past decade.


A First Course in Random Matrix Theory

A First Course in Random Matrix Theory

Author: Marc Potters

Publisher: Cambridge University Press

Published: 2020-12-03

Total Pages: 371

ISBN-13: 1108488080

DOWNLOAD EBOOK

An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.


Reflection Groups and Coxeter Groups

Reflection Groups and Coxeter Groups

Author: James E. Humphreys

Publisher: Cambridge University Press

Published: 1992-10

Total Pages: 222

ISBN-13: 9780521436137

DOWNLOAD EBOOK

This graduate textbook presents a concrete and up-to-date introduction to the theory of Coxeter groups. The book is self-contained, making it suitable either for courses and seminars or for self-study. The first part is devoted to establishing concrete examples. Finite reflection groups acting on Euclidean spaces are discussed, and the first part ends with the construction of the affine Weyl groups, a class of Coxeter groups that plays a major role in Lie theory. The second part (which is logically independent of, but motivated by, the first) develops from scratch the properties of Coxeter groups in general, including the Bruhat ordering and the seminal work of Kazhdan and Lusztig on representations of Hecke algebras associated with Coxeter groups is introduced. Finally a number of interesting complementary topics as well as connections with Lie theory are sketched. The book concludes with an extensive bibliography on Coxeter groups and their applications.


A First Course in Fourier Analysis

A First Course in Fourier Analysis

Author: David W. Kammler

Publisher: Cambridge University Press

Published: 2008-01-17

Total Pages: 39

ISBN-13: 1139469037

DOWNLOAD EBOOK

This book provides a meaningful resource for applied mathematics through Fourier analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions and shows how these mathematical ideas can be used to study sampling theory, PDEs, probability, diffraction, musical tones, and wavelets. The book contains an unusually complete presentation of the Fourier transform calculus. It uses concepts from calculus to present an elementary theory of generalized functions. FT calculus and generalized functions are then used to study the wave equation, diffusion equation, and diffraction equation. Real-world applications of Fourier analysis are described in the chapter on musical tones. A valuable reference on Fourier analysis for a variety of students and scientific professionals, including mathematicians, physicists, chemists, geologists, electrical engineers, mechanical engineers, and others.


Bounded Littlewood Identities

Bounded Littlewood Identities

Author: Eric M. Rains

Publisher: American Mathematical Soc.

Published: 2021-07-21

Total Pages: 115

ISBN-13: 1470446901

DOWNLOAD EBOOK

We describe a method, based on the theory of Macdonald–Koornwinder polynomials, for proving bounded Littlewood identities. Our approach provides an alternative to Macdonald’s partial fraction technique and results in the first examples of bounded Littlewood identities for Macdonald polynomials. These identities, which take the form of decomposition formulas for Macdonald polynomials of type (R, S) in terms of ordinary Macdonald polynomials, are q, t-analogues of known branching formulas for characters of the symplectic, orthogonal and special orthogonal groups. In the classical limit, our method implies that MacMahon’s famous ex-conjecture for the generating function of symmetric plane partitions in a box follows from the identification of GL(n, R), O(n) as a Gelfand pair. As further applications, we obtain combinatorial formulas for characters of affine Lie algebras; Rogers–Ramanujan identities for affine Lie algebras, complementing recent results of Griffin et al.; and quadratic transformation formulas for Kaneko–Macdonald-type basic hypergeometric series.


Second Order Differential Equations

Second Order Differential Equations

Author: Gerhard Kristensson

Publisher: Springer Science & Business Media

Published: 2010-08-05

Total Pages: 225

ISBN-13: 1441970207

DOWNLOAD EBOOK

Second Order Differential Equations presents a classical piece of theory concerning hypergeometric special functions as solutions of second-order linear differential equations. The theory is presented in an entirely self-contained way, starting with an introduction of the solution of the second-order differential equations and then focusingon the systematic treatment and classification of these solutions. Each chapter contains a set of problems which help reinforce the theory. Some of the preliminaries are covered in appendices at the end of the book, one of which provides an introduction to Poincaré-Perron theory, and the appendix also contains a new way of analyzing the asymptomatic behavior of solutions of differential equations. This textbook is appropriate for advanced undergraduate and graduate students in Mathematics, Physics, and Engineering interested in Ordinary and Partial Differntial Equations. A solutions manual is available online.