The field of asymmetric catalysis is currently one of the hottest areas in chemistry. This unique book focuses on the mechanism of enantioselectivity in asymmetric catalysis, rather than asymmetric catalysis from the synthetic view. It describes reliable, experimentally and computationally supported mechanisms, and discusses the danger of so-called "plausible" or "accepted" mechanisms leading to wrong conclusions. It draws parallels to enzymatic catalysis in biochemistry, and examines in detail the physico-chemical aspects of enantioselective catalysis.
This work describes the essential aspects of enantioselective catalysis, with chapters organised by concept rather than by reaction type. Each concept is supported by examples to give the reader broad exposure to a wide range of catalysts, reactions and reaction mechanisms.
The rate of advance in areas of science is seldom constant. Usually certain fields effloresce with activity because of the ~ealization that solutions are possible to long standing important problems. So it is now with asymmetric catalysis, a field which promises to change profoundly the strategic thinking of synthetic chemists. As this Report will show, reagents which can induce catalytic enantiocontrol of chemical transformations could represent the ultimate synthetic method. Nearly all synthetic strategies of complex molecules involve steps which require enantiocontrol and, in many cases, a specific catalytic transformation embodying enan tiocontrol has enormous advantages in terms of the rate and economy of the reaction. Because asymmetric catalysis is in a formative stage, workers with different backgrounds have joined the field. This Workshop had representatives with organometallic, organic, structural, kinetic, enzymatic, microbiological and industrial backgrounds. Each had his own perspective and this Report represents a consensus of this group of eleven people. The result is probably as compre hensive and balanced a view of the subject as is possible at present. It is hoped that those who have until now had but a glancing interest in asymmetric catalysis will find this Report a useful indication of its present state. We believe that asymmetric catalysis will have an increasing impact on the development of chemistry and will eventually dominate much of synthetic and industrial chemistry.
From the reviews of the First Edition . . . "An excellent text . . . will no doubt provide the benchmark for comparative works for many years."-Journal of the American Chemical Society "A resounding success . . . the definitive current summaries on their respective subjects."-Synthesis Since this important work was first published in 1993, the field of catalytic asymmetric synthesis has grown explosively, spawning effective new methods for obtaining enantiomerically pure compounds on a large scale and stimulating new applications in diverse fields-from medicine to materials science. Catalytic Asymmetric Synthesis, Second Edition addresses these rapid changes through new or substantially revised contributions from highly recognized world leaders in the field. It presents detailed accounts of the most important catalytic asymmetric reactions known today, discusses recent advances, and retains from the previous edition essential and intriguing information on the initial development of certain processes. An excellent working resource for academic researchers and industrial chemists alike, the Second Edition features: * Contributions from Noyori, Sharpless, Kagan, Trost, Overman, Shibasaki, Doyle, Okamoto, Bolm, Carreira, and many other internationally renowned authorities * New chapters on asymmetric carbometallations, asymmetric amplification and autocatalysis, and asymmetric polymerization * Extended coverage of asymmetric carbene reactions, including asymmetric intramolecular carbene insertion to C-H bonds as well as asymmetric dihydroxylation and aminohydroxylation * Extended coverage of asymmetric carbon-carbon bond-forming reactions and applications * An appendix listing all chiral ligands in the book
In the last decade a new era in asymmetric catalysis has been realised by the discovery of L-proline induced chiral enamines from carbonyls. Inspired by this, researchers have developed many other primary catalytic species in situ, more recently secondary catalytic species such as aminals have been identified for use in asymmetric synthesis. High-yielding asymmetric synthesis of bioactive and natural products through mild catalysis is an efficient approach in reaction engineering. In the early days, synthetic chemists mainly focused on the synthesis of complex molecules, with less attention on the reaction efficiency and eco-friendly conditions. Recent investigations have been directed towards the development of atom economy, eco-friendly and enantioselective synthesis for more targeted and efficient synthesis. Building on the momentum of this rapidly expanding research area, Dienamine catalysis for organic synthesis will provide a comprehensive introduction, from the preformed species, in situ generation and onto their applications in the synthesis of bioactive molecules and natural products.
A compilation of recent advances and applications in asymmetric catalysis The field of asymmetric catalysis has grown rapidly and plays a key role in drug discovery and pharmaceuticals. New Frontiers in Asymmetric Catalysis gives readers a fundamental understanding of the concepts and applications of asymmetric catalysis reactions and discusses the latest developments and findings. With contributions from preeminent scientists in their respective fields, it covers: * "Rational" ligand design, which is critically dependent on the reaction type (reduction, oxidation, and C-C bond formation) * Recent findings on activation of C-H bonds, C-C bonds, and small molecules (C=O, HCN, RN=C, and CO2) and the latest developments on C-C bond reorganization, such as metathesis * Advances in "chirally economical" non-linear phenomena, racemic catalysis, and autocatalysis * Some of the recent discoveries that have led to a renaissance in the field of organocatalysis, including the development of chiral Brönstead acids and Lewis acidic metals bearing the conjugate base of the Brönstead acids as the ligands and the chiral bi-functional acid/base catalysts The book ends with a thought-provoking perspective on the future of asymmetric catalysis that addresses both the challenges and the unlimited potential in this burgeoning field. This is an authoritative, up-to-date reference for organic chemists in academia, government, and industries, including pharmaceuticals, biotech, fine chemicals, polymers, and agriculture. It is also an excellent textbook for graduate students studying advanced organic chemistry or chemical synthesis.
This most comprehensive and unrivaled compendium in the field provides an up-to-date account of the chemistry of solids, nanoparticles and hybrid materials. Following a valuable introductory chapter reviewing important synthesis techniques, the handbook presents a series of contributions by about 150 international leading experts -- the "Who's Who" of solid state science. Clearly structured, in six volumes it collates the knowledge available on solid state chemistry, starting from the synthesis, and modern methods of structure determination. Understanding and measuring the physical properties of bulk solids and the theoretical basis of modern computational treatments of solids are given ample space, as are such modern trends as nanoparticles, surface properties and heterogeneous catalysis. Emphasis is placed throughout not only on the design and structure of solids but also on practical applications of these novel materials in real chemical situations.
Asymmetric synthesis remains a challenge to practicing scientistsas the need for enantiomerically pure or enriched compoundscontinues to increase. Over the last decade, a large amount ofliterature has been published in this field. Principles andApplications of Asymmetric Synthesis consolidates and evaluates themost useful methodologies into a one-volume resource for theconvenience of practicing scientists and students. Authored by internationally renowned scientists in the field, thisreliable reference covers more than 450 reactions and includesimportant stoichiometric as well as catalytic asymmetric reactions.The first chapter reviews the basic principles, commonnomenclature, and analytical methods, and the remainder of the bookis organized according to reaction type. The text examines suchtopics as: Carbon-carbon bond formations involving carbonyls, enamines,imines, and enolates Asymmetric C-O bond formations including epoxidation,dihydroxylation, and aminohydroxylation Asymmetric synthesis using the Diels-Alder reaction and othercyclizations Applications to the total synthesis of natural products Use of enzymes in asymmetric synthesis Practicing chemists in the pharmaceutical, fine chemical, andagricultural professions as well as graduate students will findthat Principles and Applications of Asymmetric Synthesis affordscomprehensive and current coverage.
An essential reference to the highly effective reactions applied to modern organic synthesis Rhodium complexes are one of the most important transition metals for organic synthesis due to their ability to catalyze a variety of useful transformations. Rhodium Catalysis in Organic Synthesis explores the most recent progress and new developments in the field of catalytic cyclization reactions using rhodium(I) complexes and catalytic carbon-hydrogen bond activation reactions using rhodium(II) and rhodium(III) complexes. Edited by a noted expert in the field with contributions from a panel of leading international scientists, Rhodium Catalysis in Organic Synthesis presents the essential information in one comprehensive volume. Designed to be an accessible resource, the book is arranged by different reaction types. All the chapters provide insight into each transformation and include information on the history, selectivity, scope, mechanism, and application. In addition, the chapters offer a summary and outlook of each transformation. This important resource: -Offers a comprehensive review of how rhodium complexes catalyze a variety of highly useful reactions for organic synthesis (e.g. coupling reactions, CH-bond functionalization, hydroformylation, cyclization reactions and others) -Includes information on the most recent developments that contain a range of new, efficient, elegant, reliable and useful reactions -Presents a volume edited by one of the international leading scientists working in the field today -Contains the information that can be applied by researchers in academia and also professionals in pharmaceutical, agrochemical and fine chemical companies Written for academics and synthetic chemists working with organometallics, Rhodium Catalysis in Organic Synthesis contains the most recent information available on the developments and applications in the field of catalytic cyclization reactions using rhodium complexes.