Empirical Rate-distortion Study of Compressive Sensing-based Joint Source-channel Coding

Empirical Rate-distortion Study of Compressive Sensing-based Joint Source-channel Coding

Author: Muriel Lantosoa Rambeloarison

Publisher:

Published: 2012

Total Pages: 46

ISBN-13:

DOWNLOAD EBOOK

In this thesis, we present an empirical rate-distortion study of a communication scheme that uses compressive sensing (CS) as joint source-channel coding. We investigate the rate-distortion behavior of both point-to-point and distributed cases. First, we propose an efficient algorithm to find the 4-norm regularization parameter that is required by the Least Absolute Shrinkage and Selection Operator (LASSO) which we use as a CS decoder. We then show that, for a point-to-point channel, the rate-distortion follows two distinct regimes: the first one corresponds to an almost constant distortion, and the second one to a rapid distortion degradation, as a function of rate. This constant distortion increases with both increasing channel noise level and sparsity level, but at a different gradient depending on the distortion measure. In the distributed case, we investigate the rate-distortion behavior when sources have temporal and spatial dependencies. We show that, taking advantage of both spatial and temporal correlations over merely considering the temporal correlation between the signals allows us to achieve an average of a factor of approximately 2.5 times improvement in the rate-distortion behavior of the joint source-channel coding scheme.


Source-channel Mappings with Applications to Compressed Sensing

Source-channel Mappings with Applications to Compressed Sensing

Author: Ahmad Abou Saleh

Publisher:

Published: 2011

Total Pages: 180

ISBN-13:

DOWNLOAD EBOOK

Tandem source-channel coding is proven to be optimal by Shannon given unlimited delay and complexity in the coders. Under low delay and low complexity constraints, joint source-channel coding may achieve better performance. Although digital joint source-channel coding has shown a noticeable gain in terms of reconstructed signal quality, coding delay, and complexity, it suffers from the leveling-off effect. However, analog systems do not suffer from the leveling-off effect. In this thesis, we investigate the advantage of analog systems based on the Shannon-Kotel'nikov approach and hybrid digital-analog coding systems, which combine digital and analog schemes to achieve a graceful degradation/improvement over a wide range of channel conditions. First, we propose a low delay and low complexity hybrid digital-analog coding that is able to achieve high (integer) expansion ratios (>3). This is achieved by combining the spiral mapping with multiple stage quantizers. The system is simulated for a 1 : 3 bandwidth expansion and the behavior for a 1 : M (with M an integer>3) system is studied in the low noise level regime. Next, we propose an analog joint source-channel coding system that is able to achieve a low (fractional) expansion ratio between 1 and 2. More precisely, this is an N : M bandwidth expansion system based on combining uncoded transmission and a 1 : 2 bandwidth expansion system (with N


Joint Source-Channel Decoding

Joint Source-Channel Decoding

Author: Pierre Duhamel

Publisher: Academic Press

Published: 2009-11-26

Total Pages: 337

ISBN-13: 0080922449

DOWNLOAD EBOOK

Treats joint source and channel decoding in an integrated way Gives a clear description of the problems in the field together with the mathematical tools for their solution Contains many detailed examples useful for practical applications of the theory to video broadcasting over mobile and wireless networks Traditionally, cross-layer and joint source-channel coding were seen as incompatible with classically structured networks but recent advances in theory changed this situation. Joint source-channel decoding is now seen as a viable alternative to separate decoding of source and channel codes, if the protocol layers are taken into account. A joint source/protocol/channel approach is thus addressed in this book: all levels of the protocol stack are considered, showing how the information in each layer influences the others. This book provides the tools to show how cross-layer and joint source-channel coding and decoding are now compatible with present-day mobile and wireless networks, with a particular application to the key area of video transmission to mobiles. Typical applications are broadcasting, or point-to-point delivery of multimedia contents, which are very timely in the context of the current development of mobile services such as audio (MPEG4 AAC) or video (H263, H264) transmission using recent wireless transmission standards (DVH-H, DVB-SH, WiMAX, LTE). This cross-disciplinary book is ideal for graduate students, researchers, and more generally professionals working either in signal processing for communications or in networking applications, interested in reliable multimedia transmission. This book is also of interest to people involved in cross-layer optimization of mobile networks. Its content may provide them with other points of view on their optimization problem, enlarging the set of tools which they could use. Pierre Duhamel is director of research at CNRS/ LSS and has previously held research positions at Thomson-CSF, CNET, and ENST, where he was head of the Signal and Image Processing Department. He has served as chairman of the DSP committee and associate Editor of the IEEE Transactions on Signal Processing and Signal Processing Letters, as well as acting as a co-chair at MMSP and ICASSP conferences. He was awarded the Grand Prix France Telecom by the French Science Academy in 2000. He is co-author of more than 80 papers in international journals, 250 conference proceedings, and 28 patents. Michel Kieffer is an assistant professor in signal processing for communications at the Université Paris-Sud and a researcher at the Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France. His research interests are in joint source-channel coding and decoding techniques for the reliable transmission of multimedia contents. He serves as associate editor of Signal Processing (Elsevier). He is co-author of more than 90 contributions to journals, conference proceedings, and book chapters. Treats joint source and channel decoding in an integrated way Gives a clear description of the problems in the field together with the mathematical tools for their solution Contains many detailed examples useful for practical applications of the theory to video broadcasting over mobile and wireless networks


Network Information Theory

Network Information Theory

Author: Abbas El Gamal

Publisher: Cambridge University Press

Published: 2011-12-08

Total Pages: 666

ISBN-13: 1139503146

DOWNLOAD EBOOK

This comprehensive treatment of network information theory and its applications provides the first unified coverage of both classical and recent results. With an approach that balances the introduction of new models and new coding techniques, readers are guided through Shannon's point-to-point information theory, single-hop networks, multihop networks, and extensions to distributed computing, secrecy, wireless communication, and networking. Elementary mathematical tools and techniques are used throughout, requiring only basic knowledge of probability, whilst unified proofs of coding theorems are based on a few simple lemmas, making the text accessible to newcomers. Key topics covered include successive cancellation and superposition coding, MIMO wireless communication, network coding, and cooperative relaying. Also covered are feedback and interactive communication, capacity approximations and scaling laws, and asynchronous and random access channels. This book is ideal for use in the classroom, for self-study, and as a reference for researchers and engineers in industry and academia.


Multiresolution Signal Decomposition

Multiresolution Signal Decomposition

Author: Paul A. Haddad

Publisher: Academic Press

Published: 2012-12-02

Total Pages: 389

ISBN-13: 0323138365

DOWNLOAD EBOOK

This book provides an in-depth, integrated, and up-to-date exposition of the topic of signal decomposition techniques. Application areas of these techniques include speech and image processing, machine vision, information engineering, High-Definition Television, and telecommunications. The book will serve as the major reference for those entering the field, instructors teaching some or all of the topics in an advanced graduate course and researchers needing to consult an authoritative source. n The first book to give a unified and coherent exposition of multiresolutional signal decomposition techniques n Classroom tested textbook clearly describes the commonalities among three key methods-transform coding, and wavelet transforms n Gives comparative performance evaluations of many proposed techniques


Intelligent Image and Video Compression

Intelligent Image and Video Compression

Author: Fan Zhang

Publisher: Academic Press

Published: 2021-04-07

Total Pages: 608

ISBN-13: 0128203544

DOWNLOAD EBOOK

Intelligent Image and Video Compression: Communicating Pictures, Second Edition explains the requirements, analysis, design and application of a modern video coding system. It draws on the authors’ extensive academic and professional experience in this field to deliver a text that is algorithmically rigorous yet accessible, relevant to modern standards and practical. It builds on a thorough grounding in mathematical foundations and visual perception to demonstrate how modern image and video compression methods can be designed to meet the rate-quality performance levels demanded by today's applications and users, in the context of prevailing network constraints. "David Bull and Fan Zhang have written a timely and accessible book on the topic of image and video compression. Compression of visual signals is one of the great technological achievements of modern times, and has made possible the great successes of streaming and social media and digital cinema. Their book, Intelligent Image and Video Compression covers all the salient topics ranging over visual perception, information theory, bandpass transform theory, motion estimation and prediction, lossy and lossless compression, and of course the compression standards from MPEG (ranging from H.261 through the most modern H.266, or VVC) and the open standards VP9 and AV-1. The book is replete with clear explanations and figures, including color where appropriate, making it quite accessible and valuable to the advanced student as well as the expert practitioner. The book offers an excellent glossary and as a bonus, a set of tutorial problems. Highly recommended! --Al Bovik An approach that combines algorithmic rigor with practical implementation using numerous worked examples Explains how video compression methods exploit statistical redundancies, natural correlations, and knowledge of human perception to improve performance Uses contemporary video coding standards (AVC, HEVC and VVC) as a vehicle for explaining block-based compression Provides broad coverage of important topics such as visual quality assessment and video streaming


Information Theory, Inference and Learning Algorithms

Information Theory, Inference and Learning Algorithms

Author: David J. C. MacKay

Publisher: Cambridge University Press

Published: 2003-09-25

Total Pages: 694

ISBN-13: 9780521642989

DOWNLOAD EBOOK

Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.


Multi-Frame Motion-Compensated Prediction for Video Transmission

Multi-Frame Motion-Compensated Prediction for Video Transmission

Author: Thomas Wiegand

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 166

ISBN-13: 1461514878

DOWNLOAD EBOOK

Multi-Frame Motion-Compensated Prediction for Video Transmission presents a comprehensive description of a new technique in video coding and transmission. The work presented in the book has had a very strong impact on video coding standards and will be of interest to practicing engineers and researchers as well as academics. The multi-frame technique and the Lagrangian coder control have been adopted by the ITU-T as an integral part of the well known H.263 standard and are were adopted in the ongoing H.26L project of the ITU-T Video Coding Experts Group. This work will interest researchers and students in the field of video coding and transmission. Moreover, engineers in the field will also be interested since an integral part of the well known H.263 standard is based on the presented material.