The goal of Norman H. Anderson's new book is to help students develop skills of scientific inference. To accomplish this he organized the book around the "Experimental Pyramid"--six levels that represent a hierarchy of considerations in empirical investigation--conceptual framework, phenomena, behavior, measurement, design, and statistical inference. To facilitate conceptual and empirical understanding, Anderson de-emphasizes computational formulas and null hypothesis testing. Other features include: *emphasis on visual inspection as a basic skill in experimental analysis to help students develop an intuitive appreciation of data patterns; *exercises that emphasize development of conceptual and empirical application of methods of design and analysis and de-emphasize formulas and calculations; and *heavier emphasis on confidence intervals than significance tests. The book is intended for use in graduate-level experimental design/research methods or statistics courses in psychology, education, and other applied social sciences, as well as a professional resource for active researchers. The first 12 chapters present the core concepts graduate students must understand. The next nine chapters serve as a reference handbook by focusing on specialized topics with a minimum of technicalities.
Following in the footsteps of its bestselling predecessors, the Handbook of Parametric and Nonparametric Statistical Procedures, Fifth Edition provides researchers, teachers, and students with an all-inclusive reference on univariate, bivariate, and multivariate statistical procedures.New in the Fifth Edition:Substantial updates and new material th
This book describes methods for designing and analyzing experiments that are conducted using a computer code, a computer experiment, and, when possible, a physical experiment. Computer experiments continue to increase in popularity as surrogates for and adjuncts to physical experiments. Since the publication of the first edition, there have been many methodological advances and software developments to implement these new methodologies. The computer experiments literature has emphasized the construction of algorithms for various data analysis tasks (design construction, prediction, sensitivity analysis, calibration among others), and the development of web-based repositories of designs for immediate application. While it is written at a level that is accessible to readers with Masters-level training in Statistics, the book is written in sufficient detail to be useful for practitioners and researchers. New to this revised and expanded edition: • An expanded presentation of basic material on computer experiments and Gaussian processes with additional simulations and examples • A new comparison of plug-in prediction methodologies for real-valued simulator output • An enlarged discussion of space-filling designs including Latin Hypercube designs (LHDs), near-orthogonal designs, and nonrectangular regions • A chapter length description of process-based designs for optimization, to improve good overall fit, quantile estimation, and Pareto optimization • A new chapter describing graphical and numerical sensitivity analysis tools • Substantial new material on calibration-based prediction and inference for calibration parameters • Lists of software that can be used to fit models discussed in the book to aid practitioners
Experimental Design: Procedures for Behavioral Sciences, Fourth Edition is a classic text with a reputuation for accessibility and readability. It has been revised and updated to make learning design concepts even easier. Roger E. Kirk shows how three simple experimental designs can be combined to form a variety of complex designs. He provides diagrams illustrating how subjects are assigned to treatments and treatment combinations. New terms are emphasized in boldface type, there are summaries of the advantages and disadvantages of each design, and real-life examples show how the designs are used.
The invited authors of this edited volume have been prolific in the arena of Real Data Analysis (RDA) as it applies to the social and behavioral sciences, especially in the disciplines of education and psychology. Combined, this brain trust represents 3,247 articles in refereed journals, 127 books published, US $45.3 Million in extramural research funding, 34 teaching and 92 research awards, serve(d) as Editor/Assistant Editor/Editorial Board Member for 95 peer reviewed journals, and provide (d) ad hoc reviews for 362 journals. Their enormous footprint on real data analysis is showcased for professors, researchers, educators, administrators, and graduate students in the second text in the AERA/SIG ES Quantitative Methods series.
This eagerly awaited volume presents Anderson's cumulative progress in unified social psychology. The research is grounded in the three fundamental laws of information integration theory. Research shows these laws to apply to topics in social and personality psychology such as person cognition, attitudes, moral cognition, social development, group dynamics and self-cognition. This definitive work will broaden the appreciation of Anderson's unique treatment of psychological processes.
`I often... wonder to myself whether the field needs another book, handbook, or encyclopedia on this topic. In this case I think that the answer is truly yes. The handbook is well focused on important issues in the field, and the chapters are written by recognized authorities in their fields. The book should appeal to anyone who wants an understanding of important topics that frequently go uncovered in graduate education in psychology' - David C Howell, Professor Emeritus, University of Vermont Quantitative psychology is arguably one of the oldest disciplines within the field of psychology and nearly all psychologists are exposed to quantitative psychology in some form. While textbooks in statistics, research methods and psychological measurement exist, none offer a unified treatment of quantitative psychology. The SAGE Handbook of Quantitative Methods in Psychology does just that. Each chapter covers a methodological topic with equal attention paid to established theory and the challenges facing methodologists as they address new research questions using that particular methodology. The reader will come away from each chapter with a greater understanding of the methodology being addressed as well as an understanding of the directions for future developments within that methodological area. Drawing on a global scholarship, the Handbook is divided into seven parts: Part One: Design and Inference: addresses issues in the inference of causal relations from experimental and non-experimental research, along with the design of true experiments and quasi-experiments, and the problem of missing data due to various influences such as attrition or non-compliance. Part Two: Measurement Theory: begins with a chapter on classical test theory, followed by the common factor analysis model as a model for psychological measurement. The models for continuous latent variables in item-response theory are covered next, followed by a chapter on discrete latent variable models as represented in latent class analysis. Part Three: Scaling Methods: covers metric and non-metric scaling methods as developed in multidimensional scaling, followed by consideration of the scaling of discrete measures as found in dual scaling and correspondence analysis. Models for preference data such as those found in random utility theory are covered next. Part Four: Data Analysis: includes chapters on regression models, categorical data analysis, multilevel or hierarchical models, resampling methods, robust data analysis, meta-analysis, Bayesian data analysis, and cluster analysis. Part Five: Structural Equation Models: addresses topics in general structural equation modeling, nonlinear structural equation models, mixture models, and multilevel structural equation models. Part Six: Longitudinal Models: covers the analysis of longitudinal data via mixed modeling, time series analysis and event history analysis. Part Seven: Specialized Models: covers specific topics including the analysis of neuro-imaging data and functional data-analysis.
The handbook consists of a solid theoretical and scientific rationale that is presented in a simple language, which both the beginning and advanced students can understand. It also presents a balance between quantitative and qualitative methods of research and analysis, and advocates for problem-focused methodology and mixed design when the questions asked by the researcher or the scientists require doing so. The most distinctive feature of the book is that the contents are presented in a hierarchy in terms of complexity. Therefore, the handbook can be used for teaching simple topics such as asking questions that deserve scientific methods of investigation, and simple statistical techniques, as well as complex multivariate methods of inquiry. The mathematical terms are presented in symbols and graphs only when the concepts were clarified in a simple language and friendly manner. Each of the chapters develops in a clear and sequential order, so that students and researchers accumulate knowledge based on concept mapping rather than memorization. The didactics of the book enable the learner to carry over the learning contents to other courses and apply them to other domains of interest.
Selected, peer reviewed papers from the 5th International Conference on Manufacturing Science and Engineering (ICMSE 2014), April 19-20, 2014, Shanghai, China