Several long-term trends in technology evolution have become apparent since these symposia began in 1989. Earlier presenters more frequently discussed treatment methods involving harsh and extensive human intervention. As the symposia have continued, the number of presentations describing extremely harsh and expensive treatment technologies have gradually been supplanted by more subtle and gentler methods. Such methods include subsurface-engineered barriers, phytoremediation, and bioremediation. Nineteen manuscripts were selected for inclusion in this volume, based upon peer review, scientific merit, the editors' perceptions of lasting value or innovative features, and the general applicability of either the technology itself or the scientific methods and scholarly details provided by the authors. General topics include: soil treatment, groundwater treatment, and radioactive waste treatment.
This book is focused on the current status of industrial pollution, its source, characteristics, and management through various advanced treatment technologies. The book covers the recycle, reuse and recovery of waste for the production of value-added products. The book explores industrial wastewater pollution and its treatment through various advanced technologies and also the source and characteristics of solid waste and its management for environmental safety. It discusses new methods and technologies to combat the waste-related pollution and focuses on the use of recycled products. This book is of value to upcoming students, researchers, scientists, industry persons and professionals in the field of environmental science and engineering, microbiology, biotechnology, toxicology, further it is useful for global and local authorities and policy makers responsible for the management of liquid and solid wastes.
Hazardous Waste Management: An Overview of Advanced and Cost-Effective Solutions includes the latest practical knowledge and theoretical concepts for the treatment of hazardous wastes. The book covers five major themes, namely, ecological impact, waste management hierarchy, hazardous waste characteristics and regulations, hazardous wastes management, and future scope of hazardous waste management. It serves as a comprehensive and advanced reference for undergraduate students, researchers and practitioners in the field of hazardous wastes and focuses on the latest emerging research in the management of hazardous waste, the direction in which this branch is developing as well as future prospects. The book deals with all these components in-depth, however, particular attention is given to management techniques and cost-effective, economically feasible solutions for hazardous wastes released from various sources. - Comprehensively explores the impact of hazardous wastes on human health and ecosystems - Discusses toxicity across solid waste, aquatic food chain and airborne diseases - Categorically elaborates waste treatment and management procedures with current challenges - Discusses future challenges and the importance of renewing technologies
Rapid industrialization is a serious concern in the context of a healthy environment. With the growth in the number of industries, the waste generated is also growing exponentially. The various chemical processes operating in the manufacturing industry generate a large number of by-products, which are largely harmful and toxic pollutants and are generally discharged into the natural water bodies. Once the pollutants enter the environment, they are taken up by different life forms, and because of bio-magnification, they affect the entire food chain and have severe adverse effects on all life forms, including on human health. Although, various physico-chemical and biological approaches are available for the removal of toxic pollutants, unfortunately these are often ineffective and traditional clean up practices are inefficient. Biological approaches utilizing microorganisms (bacterial/fungi/algae), green plants or their enzymes to degrade or detoxify environmental pollutants such as endocrine disruptors, toxic metals, pesticides, dyes, petroleum hydrocarbons and phenolic compounds, offer eco- friendly approaches. Such eco-friendly approaches are often more effective than traditional practices, and are safe for both industry workers as well as environment. This book provides a comprehensive overview of various toxic environmental pollutants from a variety natural and anthropogenic sources, their toxicological effects on the environment, humans, animals and plants as well as their biodegradation and bioremediation using emerging and eco-friendly approaches (e.g. Anammox technology, advanced oxidation processes, membrane bioreactors, membrane processes, GMOs), microbial degradation (e.g. bacteria, fungi, algae), phytoremediation, biotechnology and nanobiotechnology. Offering fundamental and advanced information on environmental problems, challenges and bioremediation approaches used for the remediation of contaminated sites, it is a valuable resource for students, scientists and researchers engaged in microbiology, biotechnology and environmental sciences.
This volume summarizes remedial technologies for contaminated soils and ground waters, discusses treatment combinations for remediation of Superfund sites, and focuses on new developments in soil cleaning, resource recovery, nitrification, thermal destruct
This easy-to-read and pragmatic book offers a systematic treatment of solid and hazardous waste management technology. Encouraging self-learning, with a focus on current technical and scientific fundamentals, it covers all the basic concepts and tools needed for making decisions. Chapter topics include environmental legislation and regulations; sources; composition and characteristics; physical, chemical, and biological properties; storage, collection and transportation; processing technologies; source reduction and reuse; disposal; and management and control of landfill leachate and gas. For civil engineers and scientists facing a first time involvement in any aspect of solid and hazardous waste management, this book will be a valuable reference.
Electronic Waste Management and Treatment Technology applies the latest research for designing waste treatment and disposal strategies. Written for researchers who are exploring this emerging topic, the book begins with a short, but rigorous, discussion of electric waste management that outlines common hazardous materials. such as mercury, lead, silver and flame-retardants. The book also discusses the fate of metals contained in waste electrical and electronic equipment in municipal waste treatment. Materials and methods for the remediation, recycling and treatment of plastic waste collected from waste electrical and electronic equipment (WEEE) are also covered. Finally, the book covers the depollution benchmarks for capacitors, batteries and printed circuit boards from waste electrical and electronic equipment (WEEE) and the recovery of waste printed circuit boards through pyrometallurgy. - Describes depollution benchmarks for capacitors, batteries and printed wiring boards from waste electronics - Covers metals contained in waste electrical and electronic equipment in municipal waste - Provides tactics for the recycling of mixed plastic waste from electrical and electronic equipment
With detailed photos and schematic system diagrams, the Hazardous and Radioactive Waste Treatment Technologies Handbook provides the latest information on current technologies in the market. Intended as a reference for scientists, engineers, and engineering students, it covers waste-related thermal and non-thermal technologies, separation techniques, and stabilization technologies. It provides an overview of recent waste technologies, for both hazardous chemical wastes and radioactive wastes. By implementing the techniques presented in this book, readers will be able to decide which appropriate technology to use and how to design the equipment for their particular needs.