Emerging Applications of Algebraic Geometry

Emerging Applications of Algebraic Geometry

Author: Mihai Putinar

Publisher: Springer Science & Business Media

Published: 2008-12-10

Total Pages: 382

ISBN-13: 0387096868

DOWNLOAD EBOOK

Recent advances in both the theory and implementation of computational algebraic geometry have led to new, striking applications to a variety of fields of research. The articles in this volume highlight a range of these applications and provide introductory material for topics covered in the IMA workshops on "Optimization and Control" and "Applications in Biology, Dynamics, and Statistics" held during the IMA year on Applications of Algebraic Geometry. The articles related to optimization and control focus on burgeoning use of semidefinite programming and moment matrix techniques in computational real algebraic geometry. The new direction towards a systematic study of non-commutative real algebraic geometry is well represented in the volume. Other articles provide an overview of the way computational algebra is useful for analysis of contingency tables, reconstruction of phylogenetic trees, and in systems biology. The contributions collected in this volume are accessible to non-experts, self-contained and informative; they quickly move towards cutting edge research in these areas, and provide a wealth of open problems for future research.


Using Algebraic Geometry

Using Algebraic Geometry

Author: David A. Cox

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 513

ISBN-13: 1475769113

DOWNLOAD EBOOK

An illustration of the many uses of algebraic geometry, highlighting the more recent applications of Groebner bases and resultants. Along the way, the authors provide an introduction to some algebraic objects and techniques more advanced than typically encountered in a first course. The book is accessible to non-specialists and to readers with a diverse range of backgrounds, assuming readers know the material covered in standard undergraduate courses, including abstract algebra. But because the text is intended for beginning graduate students, it does not require graduate algebra, and in particular, does not assume that the reader is familiar with modules.


Computations in Algebraic Geometry with Macaulay 2

Computations in Algebraic Geometry with Macaulay 2

Author: David Eisenbud

Publisher: Springer Science & Business Media

Published: 2001-09-25

Total Pages: 354

ISBN-13: 9783540422303

DOWNLOAD EBOOK

This book presents algorithmic tools for algebraic geometry, with experimental applications. It also introduces Macaulay 2, a computer algebra system supporting research in algebraic geometry, commutative algebra, and their applications. The algorithmic tools presented here are designed to serve readers wishing to bring such tools to bear on their own problems. The first part of the book covers Macaulay 2 using concrete applications; the second emphasizes details of the mathematics.


Algebraic Geometry and Its Applications

Algebraic Geometry and Its Applications

Author: Jean Chaumine

Publisher: World Scientific

Published: 2008

Total Pages: 530

ISBN-13: 9812793429

DOWNLOAD EBOOK

This volume covers many topics, including number theory, Boolean functions, combinatorial geometry, and algorithms over finite fields. It contains many new, theoretical and applicable results, as well as surveys that were presented by the top specialists in these areas. New results include an answer to one of Serre's questions, posted in a letter to Top; cryptographic applications of the discrete logarithm problem related to elliptic curves and hyperelliptic curves; construction of function field towers; construction of new classes of Boolean cryptographic functions; and algorithmic applications of algebraic geometry.


Positive Polynomials

Positive Polynomials

Author: Alexander Prestel

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 269

ISBN-13: 3662046482

DOWNLOAD EBOOK

Positivity is one of the most basic mathematical concepts, involved in many areas of mathematics (analysis, real algebraic geometry, functional analysis, etc.). The main objective of the book is to give useful characterizations of polynomials. Beyond basic knowledge in algebra, only valuation theory as explained in the appendix is needed.


Rigid Analytic Geometry and Its Applications

Rigid Analytic Geometry and Its Applications

Author: Jean Fresnel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 303

ISBN-13: 1461200415

DOWNLOAD EBOOK

Rigid (analytic) spaces were invented to describe degenerations, reductions, and moduli of algebraic curves and abelian varieties. This work, a revised and greatly expanded new English edition of an earlier French text by the same authors, presents important new developments and applications of the theory of rigid analytic spaces to abelian varieties, "points of rigid spaces," étale cohomology, Drinfeld modular curves, and Monsky-Washnitzer cohomology. The exposition is concise, self-contained, rich in examples and exercises, and will serve as an excellent graduate-level text for the classroom or for self-study.


Algebraic Geometry For Robotics And Control Theory

Algebraic Geometry For Robotics And Control Theory

Author: Laura Menini

Publisher: World Scientific

Published: 2021-09-02

Total Pages: 615

ISBN-13: 1800610475

DOWNLOAD EBOOK

The development of inexpensive and fast computers, coupled with the discovery of efficient algorithms for dealing with polynomial equations, has enabled exciting new applications of algebraic geometry and commutative algebra. Algebraic Geometry for Robotics and Control Theory shows how tools borrowed from these two fields can be efficiently employed to solve relevant problem arising in robotics and control theory.After a brief introduction to various algebraic objects and techniques, the book first covers a wide variety of topics concerning control theory, robotics, and their applications. Specifically this book shows how these computational and theoretical methods can be coupled with classical control techniques to: solve the inverse kinematics of robotic arms; design observers for nonlinear systems; solve systems of polynomial equalities and inequalities; plan the motion of mobile robots; analyze Boolean networks; solve (possibly, multi-objective) optimization problems; characterize the robustness of linear; time-invariant plants; and certify positivity of polynomials.


Applications of Algebraic Topology

Applications of Algebraic Topology

Author: S. Lefschetz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 190

ISBN-13: 1468493671

DOWNLOAD EBOOK

This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.


Geometric Computing with Clifford Algebras

Geometric Computing with Clifford Algebras

Author: Gerald Sommer

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 559

ISBN-13: 3662046210

DOWNLOAD EBOOK

This monograph-like anthology introduces the concepts and framework of Clifford algebra. It provides a rich source of examples of how to work with this formalism. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work shows that Clifford algebra provides a universal and powerful algebraic framework for an elegant and coherent representation of various problems occurring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics.