The book introduces the basic concepts of the finite element method in the static and dynamic analysis of beam, plate, shell and solid structures, discussing how the method works, the characteristics of a finite element approximation and how to avoid the pitfalls of finite element modeling. Presenting the finite element theory as simply as possible, the book allows readers to gain the knowledge required when applying powerful FEA software tools. Further, it describes modeling procedures, especially for reinforced concrete structures, as well as structural dynamics methods, with a particular focus on the seismic analysis of buildings, and explores the modeling of dynamic systems. Featuring numerous illustrative examples, the book allows readers to easily grasp the fundamentals of the finite element theory and to apply the finite element method proficiently.
This book provides the reader with a consistent approach to theory of structures on the basis of applied mechanics. It covers framed structures as well as plates and shells using elastic and plastic theory, and emphasizes the historical background and the relationship to practical engineering activities. This is the first comprehensive treatment of the school of structures that has evolved at the Swiss Federal Institute of Technology in Zurich over the last 50 years. The many worked examples and exercises make this a textbook ideal for in-depth studies. Each chapter concludes with a summary that highlights the most important aspects in concise form. Specialist terms are defined in the appendix. There is an extensive index befitting such a work of reference. The structure of the content and highlighting in the text make the book easy to use. The notation, properties of materials and geometrical properties of sections plus brief outlines of matrix algebra, tensor calculus and calculus of variations can be found in the appendices. This publication should be regarded as a key work of reference for students, teaching staff and practising engineers. Its purpose is to show readers how to model and handle structures appropriately, to support them in designing and checking the structures within their sphere of responsibility.
This is the key text and reference for engineers, researchers and senior students dealing with the analysis and modelling of structures – from large civil engineering projects such as dams, to aircraft structures, through to small engineered components. Covering small and large deformation behaviour of solids and structures, it is an essential book for engineers and mathematicians. The new edition is a complete solids and structures text and reference in its own right and forms part of the world-renowned Finite Element Method series by Zienkiewicz and Taylor. New material in this edition includes separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage of plasticity (isotropic and anisotropic); node-to-surface and 'mortar' method treatments; problems involving solids and rigid and pseudo-rigid bodies; and multi-scale modelling. - Dedicated coverage of solid and structural mechanics by world-renowned authors, Zienkiewicz and Taylor - New material including separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage for small and finite deformation; elastic and inelastic material constitution; contact modelling; problems involving solids, rigid and discrete elements; and multi-scale modelling
I feel elevated in presenting the New edition of this standard treatise.The favourable reception,which the previous edition and reprints of this book have enjoyed,is a matter of great satisfaction for me.I wish to express my sincere thanks to numerous professors and students for their valuable suggestions and recommending the patronise this standard treatise in the future also.
This text introduces the basic equations of the theory of structures. Conventional presentations of these equations follow the ideas of elastic analysis, introduced nearly two hundred years ago. The present book is written against the background of advances made in structural theory during the last fifty years, notably by the introduction of so-called plastic theory. Tests on real structures in the twentieth century revealed that structural states predicted by elastic analysis cannot in fact be observed in practice, whereas plastic ideas can be used to give accurate estimates of strength. Strength is discussed in the first part of this book without reference to equations of elastic deformation. However, the designer is concerned also with stiffness, for which elastic analysis is needed, and the standard equations (suitable, for example, for computer programming) are presented. Finally, stability is analyzed, which again is essentially an elastic phenomenon, and it is shown that a higher "factor of safety" is required to guard against buckling than that required to guarantee straightforward strength. The emphasis throughout is on the derivation and application of the structural equations, rather than on details of their solution (nowadays best done by computer), and the numerical examples are deliberately kept simple.
This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It uses straightforward examples to demonstrate a complete and detailed finite element procedure, emphasizing the differences between exact and numerical procedures.
STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 1 : The Basis and Solids Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM). The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume1 presents the basis of the FEM for structural analysis and a detailed description of the finite element formulation for axially loaded bars, plane elasticity problems, axisymmetric solids and general three dimensional solids. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems. The book includes a chapter on miscellaneous topics such as treatment of inclined supports, elastic foundations, stress smoothing, error estimation and adaptive mesh refinement techniques, among others. The text concludes with a chapter on the mesh generation and visualization of FEM results. The book will be useful for students approaching the finite element analysis of structures for the first time, as well as for practising engineers interested in the details of the formulation and performance of the different finite elements for practical structural analysis. STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 2: Beams, Plates and Shells Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM).The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume 2 presents a detailed description of the finite element formulation for analysis of slender and thick beams, thin and thick plates, folded plate structures, axisymmetric shells, general curved shells, prismatic structures and three dimensional beams. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems Emphasis is put on the treatment of structures with layered composite materials. The book will be useful for students approaching the finite element analysis of beam, plate and shell structures for the first time, as well as for practising engineers interested in the details of the formulation and performance of the different finite elements for practical structural analysis.
This revised and significantly expanded edition contains a rigorous examination of key concepts, new chapters and discussions within existing chapters, and added reference materials in the appendix, while retaining its classroom-tested approach to helping readers navigate through the deep ideas, vast collection of the fundamental methods of structural analysis. The authors show how to undertake the numerous analytical methods used in structural analysis by focusing on the principal concepts, detailed procedures and results, as well as taking into account the advantages and disadvantages of each method and sphere of their effective application. The end result is a guide to mastering the many intricacies of the range of methods of structural analysis. The book differentiates itself by focusing on extended analysis of beams, plane and spatial trusses, frames, arches, cables and combined structures; extensive application of influence lines for analysis of structures; simple and effective procedures for computation of deflections; introduction to plastic analysis, stability, and free and forced vibration analysis, as well as some special topics. Ten years ago, Professor Igor A. Karnovsky and Olga Lebed crafted a must-read book. Now fully updated, expanded, and titled Advanced Methods of Structural Analysis (Strength, Stability, Vibration), the book is ideal for instructors, civil and structural engineers, as well as researches and graduate and post graduate students with an interest in perfecting structural analysis.
The first optimal design problem for an elastic column subject to buckling was formulated by Lagrange over 200 years ago. However, rapid development of structural optimization under stability constraints occurred only in the last twenty years. In numerous optimal structural design problems the stability phenomenon becomes one of the most important factors, particularly for slender and thin-walled elements of aerospace structures, ships, precision machines, tall buildings etc. In engineering practice stability constraints appear more often than it might be expected; even when designing a simple beam of constant width and variable depth, the width - if regarded as a design variable - is finally determined by a stability constraint (lateral stability). Mathematically, optimal structural design under stability constraints usually leads to optimization with respect to eigenvalues, but some cases fall even beyond this type of problems. A total of over 70 books has been devoted to structural optimization as yet, but none of them has treated stability constraints in a sufficiently broad and comprehensive manner. The purpose of the present book is to fill this gap. The contents include a discussion of the basic structural stability and structural optimization problems and the pertinent solution methods, followed by a systematic review of solutions obtained for columns, arches, bar systems, plates, shells and thin-walled bars. A unified approach based on Pontryagin's maximum principle is employed inasmuch as possible, at least to problems of columns, arches and plates. Parametric optimization is discussed as well.