Elements of Parallel Computing

Elements of Parallel Computing

Author: Eric Aubanel

Publisher: CRC Press

Published: 2016-12-08

Total Pages: 238

ISBN-13: 1351979507

DOWNLOAD EBOOK

Designed for introductory parallel computing courses at the advanced undergraduate or beginning graduate level, Elements of Parallel Computing presents the fundamental concepts of parallel computing not from the point of view of hardware, but from a more abstract view of algorithmic and implementation patterns. The aim is to facilitate the teaching of parallel programming by surveying some key algorithmic structures and programming models, together with an abstract representation of the underlying hardware. The presentation is friendly and informal. The content of the book is language neutral, using pseudocode that represents common programming language models. The first five chapters present core concepts in parallel computing. SIMD, shared memory, and distributed memory machine models are covered, along with a brief discussion of what their execution models look like. The book also discusses decomposition as a fundamental activity in parallel algorithmic design, starting with a naive example, and continuing with a discussion of some key algorithmic structures. Important programming models are presented in depth, as well as important concepts of performance analysis, including work-depth analysis of task graphs, communication analysis of distributed memory algorithms, key performance metrics, and a discussion of barriers to obtaining good performance. The second part of the book presents three case studies that reinforce the concepts of the earlier chapters. One feature of these chapters is to contrast different solutions to the same problem, using select problems that aren't discussed frequently in parallel computing textbooks. They include the Single Source Shortest Path Problem, the Eikonal equation, and a classical computational geometry problem: computation of the two-dimensional convex hull. After presenting the problem and sequential algorithms, each chapter first discusses the sources of parallelism then surveys parallel algorithms.


Introduction to Parallel Computing

Introduction to Parallel Computing

Author: Ananth Grama

Publisher: Pearson Education

Published: 2003

Total Pages: 664

ISBN-13: 9780201648652

DOWNLOAD EBOOK

A complete source of information on almost all aspects of parallel computing from introduction, to architectures, to programming paradigms, to algorithms, to programming standards. It covers traditional Computer Science algorithms, scientific computing algorithms and data intensive algorithms.


Applied Parallel Computing

Applied Parallel Computing

Author: Yuefan Deng

Publisher: World Scientific

Published: 2013

Total Pages: 218

ISBN-13: 9814307602

DOWNLOAD EBOOK

The book provides a practical guide to computational scientists and engineers to help advance their research by exploiting the superpower of supercomputers with many processors and complex networks. This book focuses on the design and analysis of basic parallel algorithms, the key components for composing larger packages for a wide range of applications.


Parallel Processing for Scientific Computing

Parallel Processing for Scientific Computing

Author: Michael A. Heroux

Publisher: SIAM

Published: 2006-01-01

Total Pages: 421

ISBN-13: 9780898718133

DOWNLOAD EBOOK

Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering.


Patterns for Parallel Programming

Patterns for Parallel Programming

Author: Timothy G. Mattson

Publisher: Pearson Education

Published: 2004-09-15

Total Pages: 786

ISBN-13: 0321630033

DOWNLOAD EBOOK

The Parallel Programming Guide for Every Software Developer From grids and clusters to next-generation game consoles, parallel computing is going mainstream. Innovations such as Hyper-Threading Technology, HyperTransport Technology, and multicore microprocessors from IBM, Intel, and Sun are accelerating the movement's growth. Only one thing is missing: programmers with the skills to meet the soaring demand for parallel software. That's where Patterns for Parallel Programming comes in. It's the first parallel programming guide written specifically to serve working software developers, not just computer scientists. The authors introduce a complete, highly accessible pattern language that will help any experienced developer "think parallel"-and start writing effective parallel code almost immediately. Instead of formal theory, they deliver proven solutions to the challenges faced by parallel programmers, and pragmatic guidance for using today's parallel APIs in the real world. Coverage includes: Understanding the parallel computing landscape and the challenges faced by parallel developers Finding the concurrency in a software design problem and decomposing it into concurrent tasks Managing the use of data across tasks Creating an algorithm structure that effectively exploits the concurrency you've identified Connecting your algorithmic structures to the APIs needed to implement them Specific software constructs for implementing parallel programs Working with today's leading parallel programming environments: OpenMP, MPI, and Java Patterns have helped thousands of programmers master object-oriented development and other complex programming technologies. With this book, you will learn that they're the best way to master parallel programming too.


Parallel Scientific Computing in C++ and MPI

Parallel Scientific Computing in C++ and MPI

Author: George Em Karniadakis

Publisher: Cambridge University Press

Published: 2003-06-16

Total Pages: 640

ISBN-13: 110749477X

DOWNLOAD EBOOK

Numerical algorithms, modern programming techniques, and parallel computing are often taught serially across different courses and different textbooks. The need to integrate concepts and tools usually comes only in employment or in research - after the courses are concluded - forcing the student to synthesise what is perceived to be three independent subfields into one. This book provides a seamless approach to stimulate the student simultaneously through the eyes of multiple disciplines, leading to enhanced understanding of scientific computing as a whole. The book includes both basic as well as advanced topics and places equal emphasis on the discretization of partial differential equations and on solvers. Some of the advanced topics include wavelets, high-order methods, non-symmetric systems, and parallelization of sparse systems. The material covered is suited to students from engineering, computer science, physics and mathematics.


Parallel Computing Architectures and APIs

Parallel Computing Architectures and APIs

Author: Vivek Kale

Publisher: CRC Press

Published: 2019-12-06

Total Pages: 342

ISBN-13: 1351029207

DOWNLOAD EBOOK

Parallel Computing Architectures and APIs: IoT Big Data Stream Processing commences from the point high-performance uniprocessors were becoming increasingly complex, expensive, and power-hungry. A basic trade-off exists between the use of one or a small number of such complex processors, at one extreme, and a moderate to very large number of simpler processors, at the other. When combined with a high-bandwidth, interprocessor communication facility leads to significant simplification of the design process. However, two major roadblocks prevent the widespread adoption of such moderately to massively parallel architectures: the interprocessor communication bottleneck, and the difficulty and high cost of algorithm/software development. One of the most important reasons for studying parallel computing architectures is to learn how to extract the best performance from parallel systems. Specifically, you must understand its architectures so that you will be able to exploit those architectures during programming via the standardized APIs. This book would be useful for analysts, designers and developers of high-throughput computing systems essential for big data stream processing emanating from IoT-driven cyber-physical systems (CPS). This pragmatic book: Devolves uniprocessors in terms of a ladder of abstractions to ascertain (say) performance characteristics at a particular level of abstraction Explains limitations of uniprocessor high performance because of Moore’s Law Introduces basics of processors, networks and distributed systems Explains characteristics of parallel systems, parallel computing models and parallel algorithms Explains the three primary categorical representatives of parallel computing architectures, namely, shared memory, message passing and stream processing Introduces the three primary categorical representatives of parallel programming APIs, namely, OpenMP, MPI and CUDA Provides an overview of Internet of Things (IoT), wireless sensor networks (WSN), sensor data processing, Big Data and stream processing Provides introduction to 5G communications, Edge and Fog computing Parallel Computing Architectures and APIs: IoT Big Data Stream Processing discusses stream processing that enables the gathering, processing and analysis of high-volume, heterogeneous, continuous Internet of Things (IoT) big data streams, to extract insights and actionable results in real time. Application domains requiring data stream management include military, homeland security, sensor networks, financial applications, network management, web site performance tracking, real-time credit card fraud detection, etc.


Patterns for Parallel Software Design

Patterns for Parallel Software Design

Author: Jorge Luis Ortega-Arjona

Publisher: John Wiley & Sons

Published: 2010-06-15

Total Pages: 395

ISBN-13: 0470970871

DOWNLOAD EBOOK

Essential reading to understand patterns for parallel programming Software patterns have revolutionized the way we think about how software is designed, built, and documented, and the design of parallel software requires you to consider other particular design aspects and special skills. From clusters to supercomputers, success heavily depends on the design skills of software developers. Patterns for Parallel Software Design presents a pattern-oriented software architecture approach to parallel software design. This approach is not a design method in the classic sense, but a new way of managing and exploiting existing design knowledge for designing parallel programs. Moreover, such approaches enhance not only build-time properties of parallel systems, but also, and particularly, their run-time properties. Features known solutions in concurrent and distributed programming, applied to the development of parallel programs Provides architectural patterns that describe how to divide an algorithm and/or data to find a suitable partition and link it with a programming structure that allows for such a division Presents an architectural point of view and explains the development of parallel software Patterns for Parallel Software Design will give you the skills you need to develop parallel software.