Annotation This text serves as a transition between introductory courses in electromagnetism and rapid advances in microwave technology. Discussions on areas such as lossy and multiple connect are designed to arouse the interest of novice students, enhance analytical skills of practitioners, and invite advanced students to explore novel concepts developed here. Discussions on ferrite networks are presented as an integral part of the author's theoretical methodology. Includes exercises and answers. For use in an undergraduate elective course. Annotation copyrighted by Book News, Inc., Portland, OR.
This important book serves as a transition between introductory courses in electromagnetism and realistic concepts employed in the microwave industry. Topics on lossy, multiply connected and ferrite networks are discussed in a simple and direct style to arouse the interest of the novice student, enhance the analytical skills of the practitioner, and invite the perusal of the advanced student to explore the novel concepts developed in the book. In particular, the discussions on ferrite networks are presented as an integral part of the author's theoretical methodology rather than a specialized presentation or an addendum to the book.
Annotation This text serves as a transition between introductory courses in electromagnetism and rapid advances in microwave technology. Discussions on areas such as lossy and multiple connect are designed to arouse the interest of novice students, enhance analytical skills of practitioners, and invite advanced students to explore novel concepts developed here. Discussions on ferrite networks are presented as an integral part of the author's theoretical methodology. Includes exercises and answers. For use in an undergraduate elective course. Annotation copyrighted by Book News, Inc., Portland, OR.
Pozar's new edition of Microwave Engineering includes more material on active circuits, noise, nonlinear effects, and wireless systems. Chapters on noise and nonlinear distortion, and active devices have been added along with the coverage of noise and more material on intermodulation distortion and related nonlinear effects. On active devices, there's more updated material on bipolar junction and field effect transistors. New and updated material on wireless communications systems, including link budget, link margin, digital modulation methods, and bit error rates is also part of the new edition. Other new material includes a section on transients on transmission lines, the theory of power waves, a discussion of higher order modes and frequency effects for microstrip line, and a discussion of how to determine unloaded.
This book provides a fundamental and practical introduction to radio frequency and microwave engineering and physical aspects of wireless communication In this book, the author addresses a wide range of radio-frequency and microwave topics with emphasis on physical aspects including EM and voltage waves, transmission lines, passive circuits, antennas, radio wave propagation. Up-to-date RF design tools like RF circuit simulation, EM simulation and computerized smith charts, are used in various examples to demonstrate how these methods can be applied effectively in RF engineering practice. Design rules and working examples illustrate the theoretical parts. The examples are close to real world problems, so the reader can directly transfer the methods within the context of their own work. At the end of each chapter a list of problems is given in order to deepen the reader’s understanding of the chapter material and practice the new competences. Solutions are available on the author’s website. Key Features: Presents a wide range of RF topics with emphasis on physical aspects e.g. EM and voltage waves, transmission lines, passive circuits, antennas Uses various examples of modern RF tools that show how the methods can be applied productively in RF engineering practice Incorporates various design examples using circuit and electromagnetic (EM) simulation software Discusses the propagation of waves: their representation, their effects, and their utilization in passive circuits and antenna structures Provides a list of problems at the end of each chapter Includes an accompanying website containing solutions to the problems (http:\\www.fh-dortmund.de\gustrau_rf_textbook) This will be an invaluable textbook for bachelor and masters students on electrical engineering courses (microwave engineering, basic circuit theory and electromagnetic fields, wireless communications). Early-stage RF practitioners, engineers (e.g. application engineer) working in this area will also find this book of interest.
Fundamentals of Microwave and RF Design enables mastery of the essential concepts required to cross the barriers to a successful career in microwave and RF design. Extensive treatment of scattering parameters, that naturally describe power flow, and of Smith-chart-based design procedures prepare the student for success. The emphasis is on design at the module level and on covering the whole range of microwave functions available. The orientation is towards using microstrip transmission line technologies and on gaining essential mathematical, graphical and design skills for module design proficiency. This book is derived from a multi volume comprehensive book series, Microwave and RF Design, Volumes 1-5, with the emphasis in this book being on presenting the fundamental materials required to gain entry to RF and microwave design. This book closely parallels the companion series that can be consulted for in-depth analysis with referencing of the book series being familiar and welcoming. Key Features * A companion volume to a comprehensive series on microwave and RF design * Open access ebook editions are hosted by NC State University Libraries at https://repository.lib.ncsu.edu/handle/1840.20/36776 * 59 worked examples * An average of 24 exercises per chapter * Answers to selected exercises * Emphasis on module-level design using microstrip technologies * Extensive treatment of design using Smith charts * A parallel companion book series provides a detailed reference resource
An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers: network and signal theory; electronic technology with guided electromagnetic propagation; microwave circuits such as linear and non-linear circuits, resonant circuits and cavities, monolithic microwave circuits (MMICs), wireless architectures and integrated circuits; passive microwave components, control components; microwave filters and matching networks. Simulation files are included in a CD Rom, found inside the book. Microwave and RF Engineering presents up-to-date research and applications at different levels of difficulty, creating a useful tool for a first approach to the subject as well as for subsequent in-depth study. It is therefore indispensable reading for advanced professionals and designers who operate at high frequencies as well as senior students who are first approaching the subject.
The first book to cover all engineering aspects of microwave communication path design for the digital age Fixed point-to-point microwave systems provide moderate-capacity digital transmission between well-defined locations. Most popular in situations where fiber optics or satellite communication is impractical, it is commonly used for cellular or PCS site interconnectivity where digital connectivity is needed but not economically available from other sources, and in private networks where reliability is most important. Until now, no book has adequately treated all engineering aspects of microwave communications in the digital age. This important new work provides readers with the depth of knowledge necessary for all the system engineering details associated with fixed point-to-point microwave radio path design: the why, what, and how of microwave transmission; design objectives; engineering methodologies; and design philosophy (in the bid, design, and acceptance phase of the project). Written in an easily accessible format, Digital Microwave Communication features an appendix of specialized engineering details and formulas, and offers up chapter coverage of: A Brief History of Microwave Radio Microwave Radio Overview System Components Hypothetical Reference Circuits Multipath Fading Rain Fading Reflections and Obstructions Network Reliability Calculations Regulation of Microwave Radio Networks Radio Network Performance Objectives Designing and Operating Microwave Systems Antennas Radio Diversity Ducting and Obstruction Fading Digital Receiver Interference Path Performance Calculations Digital Microwave Communication: Engineering Point-to-Point Microwave Systems will be of great interest to engineers and managers who specify, design, or evaluate fixed point-to-point microwave systems associated with communications systems and equipment manufacturers, independent and university research organizations, government agencies, telecommunications services, and other users.
Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics—including microwave generation, measurement, and processing—equal emphasis. Packed with illustrations to aid in comprehension, the book: Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits Addresses scattering parameters and their properties, as well as planar structures including striplines and microstrips Considers the limitations of conventional tubes, behavior of charged particles in different fields, and the concept of velocity modulation Based on the author’s own class notes, Microwave Engineering: Concepts and Fundamentals consists of 16 chapters featuring homework problems, references, and numerical examples. PowerPoint® slides and MATLAB®-based solutions are available with qualifying course adoption.
This practical book is the first comprehensive treatment of lumped elements, which are playing a critical role in the development of the circuits that make these cost-effective systems possible. The book offers professionals an in-depth understanding of the different types of RF and microwave circuit elements.