M.W. Wong: Quantum Chemical Calculations of Sulfur-Rich Compounds.- B. Eckert, R. Steudel: Molecular Spectra of Sulfur Molecules and Solid Sulfur Allotropes.- R. Steudel: Inorganic Polysulfanes H2Sn.- R. Steudel: Inorganic Polysulfides Sn2- and Radical Anions Sn-.- N. Takeda, N. Tokitoh and R. Okazaki: Polysulfido Complexes of Main Group and Transition Metals.- R. Steudel: Sulfur-Rich Oxides SnO and SnO2.
Despite more than 200 years of sulfur research the chemistry of elemental sulfur and sulfur-rich compounds is still full of “white spots” which have to be filled in with solid knowledge and reliable data. This situation is parti- larly regrettable since elemental sulfur is one of the most important raw - terials of the chemical industry produced in record-breaking quantities of ca. 35 million tons annually worldwide and mainly used for the production of sulfuric acid. Fortunately, enormous progress has been made during the last 30 years in the understanding of the “yellow element”. As the result of extensive inter- tional research activities sulfur has now become the element with the largest number of allotropes, the element with the largest number of binary oxides, and also the element with the largest number of binary nitrides. Sulfur, a typical non-metal, has been found to become a metal at high pressure and is even superconducting at 10 K under a pressure of 93 GPa and at 17 K at 260 GPa, respectively. This is the highest critical temperature of all chemical elements. Actually, the pressure-temperature phase diagram of sulfur is one of the most complicated of all elements and still needs further investigation.
R. Steudel, B. Eckert: Solid Sulfur Allotropes.- R. Steudel: Liquid Sulfur.- R. Steudel, Y. Steudel, M.W. Wong: Speciation and Thermodynamics of Sulfur Vapor.- I. Krossing: Homoatomic Sulfur Cations.- R. Steudel: Aqueous Sulfur Sols.- W.E. Kleinjan, A. de Keizer, A. J. H. Janssen: Biologically Produced Sulfur.
R. Steudel, B. Eckert: Solid Sulfur Allotropes.- R. Steudel: Liquid Sulfur.- R. Steudel, Y. Steudel, M.W. Wong: Speciation and Thermodynamics of Sulfur Vapor.- I. Krossing: Homoatomic Sulfur Cations.- R. Steudel: Aqueous Sulfur Sols.- W.E. Kleinjan, A. de Keizer, A. J. H. Janssen: Biologically Produced Sulfur.
Table of contents C.N.R. Rao, M.M. Seikh, C. Narayana: Spin-State Transition in LaCoO3 and Related Materials .- H.A. Goodwin: Spin Crossover in Cobalt(II) Systems .- Y. Garcia, P.G tlich: Thermal Spin Crossover in Mn(II), Mn(III) Cr(II) and Co(III) Coordination Compounds .- D.N. Hendrickson, C.G. Pierpont: Valence Tautomeric Transition Metal Complexes .- P. Guionneau, M. Marchivie, G.Bravic, J.-F. Letard, D. Chasseau: Structural Aspects of Spin Crossover. Example of the [Fe(II)Ln(NCS)2] Complexes .- J. Kusz, P. G tlich, H. Spiering: Structural Investigations of Tetrazole Complexes of Iron(II) .- A. Hauser: Light-Induced Spin Crossover and the High-Spin Low-Spin Relaxation .- F. Varret, K. Boukheddaden, E. Codjovi, C. Enachescu, J. Linar s: On the Competition Between Relaxation and Photoexcitations in Spin Crossover Solids under Continuous Irradiation .- P. G tlich: Nuclear Decay Induced Excited Spin State Trapping (NIESST) .- M.-L. Boillot, J. Zarembowitch, A. Sour: Ligand-Driven Light-Induced Spin Change (LD-LISC): A Promising Photomagnetic Effect
C. Brady, J.J. McGarvey, J.K. McCusker, H. Toftlund, D.N. Hendrickson: Time-Resolved Relaxation Studies of Spin Crossover Systems in Solution.- V. Ksenofontov, P. Gütlich et al.: Spin Crossover under Pressure.- A. Bousseksou, F. Varret, M. Goiran, K. Boukheddaden, J.P. Tuchagues: The Spin Crossover Phenomenon under High Magnetic Field.- J.-P. Tuchagues, A. Bousseksou, G. Molnár, J.J. McGarvey, F. Varret: The Role of Molecular Vibrations in the Spin Crossover Phenomenon.- W. Linert, M. Grunert, A.B. Koudriavtsev: Isokinetic and Isoequilibrium Relationships in Spin Crossover Systems.- H. Winkler, A.I: Chumakov, A.X. Trautwein: Nuclear Resonant Forward and Nuclear Inelastic Scattering Using Synchrotron Radiation for Spin Crossover Systems.- M. Sorai: Heat Capacity Studies of Spin Crossover Systems.- H. Spiering et al.: Cooperative Elastic Interactions in Spin Crossover Systems.- H. Paulsen, A.X. Trautwein: Density Functional Theory Calculations for Spin Crossover Complexes.- J.-F. Létard, P. Guionneau, L. Goux-Capes: Towards Spin Crossover Applications.