The Squid Giant Synapse

The Squid Giant Synapse

Author: Rodolfo Riascos Llinás

Publisher:

Published: 1999

Total Pages: 234

ISBN-13: 9780195116526

DOWNLOAD EBOOK

The squid giant synapse is the single most important model for investigating the transmitter release mechanism in chemical junctions. This unique book, by a leading expert in the field, gives a concise overview of all that has been learned about synaptic transmission in this superb model system. It covers in detail the biophysics of the voltage-dependent calcium currents, calcium concentration microdomains, and much of the molecular basis for the triggering of the secretory event. Ideal for graduate and undergraduate courses, the book includes PC and Macintosh versions of two programs for simulating and manipulating any aspect of synaptic transmission. One program is a modeling tool designed for working neuroscientists, and the other teaches the basic principles of synaptic transmission by allowing students to alter the parameters, essentially without limits, and see the effects on the action potential over time. Anyone studying this central topic of neuroscience will find this book an invaluable resource.


Neurotransmitter Release

Neurotransmitter Release

Author: Hugo J. Bellen

Publisher: Oxford University Press, USA

Published: 1999

Total Pages: 466

ISBN-13:

DOWNLOAD EBOOK

This book provides the reader with background information on neurotransmitter release. Emphasis is placed on the rationale by which proteins are assigned specific functions rather than just providing facts about function.


Synaptic Function

Synaptic Function

Author: Neurosciences Institute (New York, N.Y.)

Publisher: Wiley-Interscience

Published: 1987

Total Pages: 808

ISBN-13:

DOWNLOAD EBOOK

This book consists of five sections. The first section details methods for analyzing both presynaptic and postsynaptic function and emphasizes the molecular aspects of synapses. It describes ongoing studies of neurotransmitter release, voltage- sensitive ion channels, and electronic transmission at gap junctions. The second section focuses on the growing menagerie of neurotransmitters: their catagorization into chemical families, their relation to ion channels, their modulation by second messenger systems and their role in pharmacologic action. The third section considers the important relationship of transmitter diversity and synaptic types to the behavior of actual cellular networks. All of the studies described in these sections point to the necessity of considering interactions between anatomy, chemistry, physiology and pharmacology if synaptic function is to be understood at any one of these levels of analysis.


Electrophysiological Analysis of Synaptic Transmission

Electrophysiological Analysis of Synaptic Transmission

Author: Nicholas Graziane

Publisher: Springer Nature

Published: 2022-08-03

Total Pages: 283

ISBN-13: 1071625896

DOWNLOAD EBOOK

This second edition volume expands on the previous edition with discussions on the latest techniques used to study synaptic transmissions. The chapters in this book are organized into six parts. Part One looks at the basic concepts, such as extracellular and intracellular recordings, and spatiotemporal effects of synaptic currents. Part Two describes the recording of synaptic currents, such as measuring kinetics of synaptic current and measuring reversal potentials. Part Three discusses basic experimentations of synaptic transmission and covers run-up and run-down, and amplitude. Parts Four and Five cover experimentations with computational components and molecular and visual components, such as measurement of a single synapse and electrophysiological and visual tags. Part Six explores in vivo recordings and talks about general considerations for in vivo exploration of synaptic plasticity. In the Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your laboratory. Authoritative and thorough, Electrophysiological Analysis of Synaptic Transmission, Second Edition is a valuable resource that introduces graduate students and postdoctoral fellows to important topics in this field and also expands these topics to practical electrophysiological approaches.


Patterning and Cell Type Specification in the Developing CNS and PNS

Patterning and Cell Type Specification in the Developing CNS and PNS

Author:

Publisher: Academic Press

Published: 2013-05-06

Total Pages: 993

ISBN-13: 0123973481

DOWNLOAD EBOOK

The genetic, molecular, and cellular mechanisms of neural development are essential for understanding evolution and disorders of neural systems. Recent advances in genetic, molecular, and cell biological methods have generated a massive increase in new information, but there is a paucity of comprehensive and up-to-date syntheses, references, and historical perspectives on this important subject. The Comprehensive Developmental Neuroscience series is designed to fill this gap, offering the most thorough coverage of this field on the market today and addressing all aspects of how the nervous system and its components develop. Particular attention is paid to the effects of abnormal development and on new psychiatric/neurological treatments being developed based on our increased understanding of developmental mechanisms. Each volume in the series consists of review style articles that average 15-20pp and feature numerous illustrations and full references. Volume 1 offers 48 high level articles devoted mainly to patterning and cell type specification in the developing central and peripheral nervous systems. - Series offers 144 articles for 2904 full color pages addressing ways in which the nervous system and its components develop - Features leading experts in various subfields as Section Editors and article Authors - All articles peer reviewed by Section Editors to ensure accuracy, thoroughness, and scholarship - Volume 1 sections include coverage of mechanisms which: control regional specification, regulate proliferation of neuronal progenitors and control differentiation and survival of specific neuronal subtypes, and controlling development of non-neural cells


Ion Channel Regulation

Ion Channel Regulation

Author:

Publisher: Academic Press

Published: 1999-04-13

Total Pages: 339

ISBN-13: 0080526454

DOWNLOAD EBOOK

Volume 33 reviews the current understanding of ion channel regulation by signal transduction pathways. Ion channels are no longer viewed simply as the voltage-gated resistors of biophysicists or the ligand-gated receptors of biochemists. They have been transformed during the past 20 years into signaling proteins that regulate every aspect of cell physiology. In addition to the voltage-gated channels, which provide the ionic currents to generate and spread neuronal activity, and the calcium ions to trigger synaptic transmission, hormonal secretion, and muscle contraction, new gene families of ion channel proteins regulate cell migration, cell cycle progression, apoptosis, and gene transcription, as well as electrical excitability. Even the genome of the lowly roundworm Caenorhabditis elegans encodes almost 100 distinct genes for potassium-selective channels alone. Most of these new channel proteins are insensitive to membrane potential, yet in humans, mutations in these genes disrupt development and increase individual susceptibility to debilitating and lethal diseases.How do cells regulate the activity of these channels? How might we restore their normal function? In Ion Channel Regulation, many of the experts who pioneered these discoveries provide detailed summaries of our current understanding of the molecular mechanisms that control ion channel activity. - Reviews brain functioning at the fundamental, molecular level - Describes key systems that control signaling between and within cells - Explains how channels are used to stimulate growth and changes to activity of the nucleus and genome


Anesthetic Pharmacology

Anesthetic Pharmacology

Author: Alex S. Evers

Publisher: Cambridge University Press

Published: 2011-03-10

Total Pages: 2902

ISBN-13: 1139497022

DOWNLOAD EBOOK

In recent years our understanding of molecular mechanisms of drug action and interindividual variability in drug response has grown enormously. Meanwhile, the practice of anesthesiology has expanded to the preoperative environment and numerous locations outside the OR. Anesthetic Pharmacology: Basic Principles and Clinical Practice, 2nd edition, is an outstanding therapeutic resource in anesthesia and critical care: Section 1 introduces the principles of drug action, Section 2 presents the molecular, cellular and integrated physiology of the target organ/functional system and Section 3 reviews the pharmacology and toxicology of anesthetic drugs. The new Section 4, Therapeutics of Clinical Practice, provides integrated and comparative pharmacology and the practical application of drugs in daily clinical practice. Edited by three highly acclaimed academic anesthetic pharmacologists, with contributions from an international team of experts, and illustrated in full colour, this is a sophisticated, user-friendly resource for all practitioners providing care in the perioperative period.


Fundamental Neuroscience

Fundamental Neuroscience

Author: Larry Squire

Publisher: Academic Press

Published: 2008-04-02

Total Pages: 1277

ISBN-13: 0080561020

DOWNLOAD EBOOK

Fundamental Neuroscience, Third Edition introduces graduate and upper-level undergraduate students to the full range of contemporary neuroscience. Addressing instructor and student feedback on the previous edition, all of the chapters are rewritten to make this book more concise and student-friendly than ever before. Each chapter is once again heavily illustrated and provides clinical boxes describing experiments, disorders, and methodological approaches and concepts.Capturing the promise and excitement of this fast-moving field, Fundamental Neuroscience, 3rd Edition is the text that students will be able to reference throughout their neuroscience careers! 30% new material including new chapters on Dendritic Development and Spine Morphogenesis, Chemical Senses, Cerebellum, Eye Movements, Circadian Timing, Sleep and Dreaming, and Consciousness Additional text boxes describing key experiments, disorders, methods, and concepts Multiple model system coverage beyond rats, mice, and monkeys Extensively expanded index for easier referencing


Neurosecretion: Secretory Mechanisms

Neurosecretion: Secretory Mechanisms

Author: José R. Lemos

Publisher: Springer Nature

Published: 2020-03-31

Total Pages: 318

ISBN-13: 3030229890

DOWNLOAD EBOOK

How do electrical activity and calcium signals in neurons influence the secretion of peptide hormones? This volume presents the current state of knowledge regarding the electrical, calcium signaling and synaptic properties of neuroendocrine systems from both vertebrate and invertebrate systems. The contributions span in vivo and in vitro studies that address: state‐dependent plasticity, relevance of firing patterns, membrane properties, calcium flux (including dynamic imaging and homeostasis), and molecular mechanisms of exocytosis, including from non-neuronal secretory cells. The chapters focus not only on research results but also on how experiments are conducted using state-of-the-art techniques, and how the resulting data are interpreted. While there are many books on the secretory properties of neurons, this is the first to focus on the distinctive secretory properties of neuroendocrine neurons. Accordingly, it offers an important text for undergraduate and graduate neuroscience students, and will also appeal to established scientists and postdoctoral fellows. This is the eighth volume in the Masterclass in Neuroendocrinology series* - now a co-publication between Springer Nature and the INF (International Neuroendocrine Federation). *Volumes 1-7 published by Wiley


Transgenic Models in Pharmacology

Transgenic Models in Pharmacology

Author: Lutz Hein

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 665

ISBN-13: 3642189342

DOWNLOAD EBOOK

Up-to-date information on animal models generated by transgenic or gene targeting techniques. Naturally, the focus is on the mouse system. Each chapter has been written by leading experts in the field and gives an overview on existing animal models. This is facilitated by tables, which list the most important genetically engineered animal models and their phenotypes. This book aims at illustrating the impact of transgenic animal models in the field of Experimental Pharmacology and Toxicology, which includes their role in the understanding of basic cellular mechanisms, the evaluation of potential drug targets or the testing for drug effects.