Physics and Properties of Narrow Gap Semiconductors

Physics and Properties of Narrow Gap Semiconductors

Author: Junhao Chu

Publisher: Springer Science & Business Media

Published: 2007-11-21

Total Pages: 613

ISBN-13: 0387748016

DOWNLOAD EBOOK

Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. They often operate at the extremes of the rules of semiconductor science. This book offers clear descriptions of crystal growth and the fundamental structure and properties of these unique materials. Topics covered include band structure, optical and transport properties, and lattice vibrations and spectra. A thorough treatment of the properties of low-dimensional systems and their relation to infrared applications is provided.


Electronic Structure of Semiconductor Heterojunctions

Electronic Structure of Semiconductor Heterojunctions

Author: Giorgio Margaritondo

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 348

ISBN-13: 9400930739

DOWNLOAD EBOOK

E se non che di cid son vere prove A nd were it not for the true evidence Per piti e piti autori, che sa, ra. nno Of many authors who will be Per i miei versi nominati altrove, Mentioned elsewhere in my rhyme Non presterei alla penna 10. mana I would not lend my hand to the pen Per nota1' cid ch'io vidi, can temenza And describe my observations, for fear ehe non fosse do. altri casso e van 0; That they would be rejected and in vane; Mala lor chiara. e vera. esperienza But these authors' clear and true experience Mi assicura. nel dir, come persone Encourages me to report, since they Degne di fede ad ogni gra. n sentenza. Should always be trusted for their word. [From" Dittamondo", by Fazio degli UbertiJ Heterojunction interfaces, the interfaces between different semiconducting materi als, have been extensively explored for over a quarter of a century. The justifica tion for this effort is clear - these interfaces could become the building blocks of lllany novel solid-state devices. Other interfaces involving semiconductors are al ready widely used in technology, These are, for example, metal-semiconductor and insulator-semiconductor junctions and hOll1ojunctions. In comparison, the present applications of heterojunction int. erfaces are limited, but they could potentially becOlne lnuch lllore ext. ensive in the neal' future. The path towards the widespread use of heterojunctions is obstructed by several obstacles


Electron Spectrum of Gapless Semiconductors

Electron Spectrum of Gapless Semiconductors

Author: J. Tsidilkovski

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 259

ISBN-13: 364260403X

DOWNLOAD EBOOK

A presentation of the peculiarities of the physical properties of a comparatively new class of solids. GSs are of practical interest since they are very sensitive to impurities, and to the influence of light, magnetic and electric fields, and to pressure.


Narrow-gap Semiconductor Photodiodes

Narrow-gap Semiconductor Photodiodes

Author: Antoni Rogalski

Publisher: SPIE Press

Published: 2000

Total Pages: 464

ISBN-13: 9780819436191

DOWNLOAD EBOOK

In this monograph, investigations of the performance of narrow-gap semiconductor photodiodes are presented, and recent progress in different IR photodiode technologies is discussed: HgCdTe photodiodes, InSb photodiodes, alternatives to HgCdTe III-V and II-VI ternary alloy photodiodes, lead chalcogenide photodiodes, and a new class of photodiodes based on two-dimensional solids. Investigations of the performance of photodiodes operated in different spectral regions are presented.


Electronic Structure

Electronic Structure

Author: Richard M. Martin

Publisher: Cambridge University Press

Published: 2020-08-27

Total Pages: 791

ISBN-13: 1108657478

DOWNLOAD EBOOK

The study of electronic structure of materials is at a momentous stage, with new computational methods and advances in basic theory. Many properties of materials can be determined from the fundamental equations, and electronic structure theory is now an integral part of research in physics, chemistry, materials science and other fields. This book provides a unified exposition of the theory and methods, with emphasis on understanding each essential component. New in the second edition are recent advances in density functional theory, an introduction to Berry phases and topological insulators explained in terms of elementary band theory, and many new examples of applications. Graduate students and research scientists will find careful explanations with references to original papers, pertinent reviews, and accessible books. Each chapter includes a short list of the most relevant works and exercises that reveal salient points and challenge the reader.


Electronic Structure Methods for Complex Materials

Electronic Structure Methods for Complex Materials

Author: Wai-Yim Ching

Publisher: Oxford University Press

Published: 2012-05-17

Total Pages: 325

ISBN-13: 0199575800

DOWNLOAD EBOOK

This book details the application of the OLCAO method for calculating the properties of solids from fundamental principles to a wide array of material systems. The method specializes in large and complex models and is able to compute a variety of useful properties including electronic, optical, and spectroscopic properties.


Semiconductor Physics

Semiconductor Physics

Author: Karl W. Böer

Publisher: Springer Nature

Published: 2023-02-02

Total Pages: 1408

ISBN-13: 3031182863

DOWNLOAD EBOOK

This handbook gives a complete and detailed survey of the field of semiconductor physics. It addresses every fundamental principle, the most important research topics and results, as well as conventional and emerging new areas of application. Additionally it provides all essential reference material on crystalline bulk, low-dimensional, and amorphous semiconductors, including valuable data on their optical, transport, and dynamic properties. This updated and extended second edition includes essential coverage of rapidly advancing areas in semiconductor physics, such as topological insulators, quantum optics, magnetic nanostructures and spintronic systems. Richly illustrated and authored by a duo of internationally acclaimed experts in solar energy and semiconductor physics, this handbook delivers in-depth treatment of the field, reflecting a combined experience spanning several decades as both researchers and educators. Offering a unique perspective on many issues, Semiconductor Physics is an invaluable reference for physicists, materials scientists and engineers throughout academia and industry.


Fundamentals of Semiconductor Physics and Devices

Fundamentals of Semiconductor Physics and Devices

Author: Rolf Enderlein

Publisher: World Scientific

Published: 1997

Total Pages: 786

ISBN-13: 9810223870

DOWNLOAD EBOOK

This book is an introduction to the principles of semiconductor physics, linking its scientific aspects with practical applications. It is addressed to both readers who wish to learn semiconductor physics and those seeking to understand semiconductor devices. It is particularly well suited for those who want to do both.Intended as a teaching vehicle, the book is written in an expository manner aimed at conveying a deep and coherent understanding of the field. It provides clear and complete derivations of the basic concepts of modern semiconductor physics. The mathematical arguments and physical interpretations are well balanced: they are presented in a measure designed to ensure the integrity of the delivery of the subject matter in a fully comprehensible form. Experimental procedures and measured data are included as well. The reader is generally not expected to have background in quantum mechanics and solid state physics beyond the most elementary level. Nonetheless, the presentation of this book is planned to bring the student to the point of research/design capability as a scientist or engineer. Moreover, it is sufficiently well endowed with detailed knowledge of the field, including recent developments bearing on submicron semiconductor structures, that the book also constitutes a valuable reference resource.In Chapter 1, basic features of the atomic structures, chemical nature and the macroscopic properties of semiconductors are discussed. The band structure of ideal semiconductor crystals is treated in Chapter 2, together with the underlying one-electron picture and other fundamental concepts. Chapter 2 also provides the requisite background of the tight binding method and the k.p-method, which are later used extensively. The electron states of shallow and deep centers, clean semiconductor surfaces, quantum wells and superlattices, as well as the effects of external electric and magnetic fields, are treated in Chapter 3. The one- or multi-band effective mass theory is used wherever this method is applicable. A summary of group theory for application in semiconductor physics is given in an Appendix. Chapter 4 deals with the statistical distribution of charge carriers over the band and localized states in thermodynamic equilibrium. Non-equilibrium processes in semiconductors are treated in Chapter 5. The physics of semiconductor junctions (pn-, hetero-, metal-, and insulator-) is developed in Chapter 6 under conditions of thermodynamic equilibrium, and in Chapter 7 under non-equilibrium conditions. On this basis, the most important electronic and opto-electronic semiconductor devices are treated, among them uni- and bi-polar transistors, photodetectors, solar cells, and injection lasers. A summary of group theory for applications in semiconductors is given in an Appendix.


Electronic States of Narrow-Gap Semiconductors Under Multi-Extreme Conditions

Electronic States of Narrow-Gap Semiconductors Under Multi-Extreme Conditions

Author: Kazuto Akiba

Publisher: Springer

Published: 2019-04-04

Total Pages: 165

ISBN-13: 9811371075

DOWNLOAD EBOOK

This book discusses the latest investigations into the electronic structure of narrow-gap semiconductors in extreme conditions, and describes in detail magnetic field and pressure measurements using two high-quality single crystals: black phosphorus (BP) and lead telluride (PbTe). The book presents two significant findings for BP and PbTe. The first is the successful demonstration of the pressure-induced transition from semiconductor to semimetal in the electronic structure of BP using magnetoresistance measurements. The second is the quantitative estimation of how well the Dirac fermion description works for electronic properties in PbTe. The overviews on BP and PbTe from the point of view of material properties help readers quickly understand the typical electronic character of narrow-gap semiconductor materials, which has recently attracted interest in topological features in condensed matter physics. Additionally the introductory review of the principles and methodology allows readers to understand the high magnetic field and pressure experiments.