Electronic Structure Methods for Complex Materials

Electronic Structure Methods for Complex Materials

Author: Wai-Yim Ching

Publisher: Oxford University Press

Published: 2012-05-17

Total Pages: 325

ISBN-13: 0199575800

DOWNLOAD EBOOK

This book details the application of the OLCAO method for calculating the properties of solids from fundamental principles to a wide array of material systems. The method specializes in large and complex models and is able to compute a variety of useful properties including electronic, optical, and spectroscopic properties.


Electronic Structure Methods for Complex Materials

Electronic Structure Methods for Complex Materials

Author: Wai-Yim Ching

Publisher: OUP Oxford

Published: 2012-05-17

Total Pages: 328

ISBN-13: 0191635065

DOWNLOAD EBOOK

Density functional theory (DFT) has blossomed in the past few decades into a powerful tool that is used by experimentalists and theoreticians alike. This book highlights the extensive contributions that the DFT-based OLCAO method has made to progress in this field, and it demonstrates its competitiveness for performing ab initio calculations on large and complex models of practical systems. A brief historical account and introduction to the elements of the theory set the stage for discussions on semiconductors, insulators, crystalline metals and alloys, complex crystals, non-crystalline solids and liquids, microstructure containing systems and those containing impurities, defects, and surfaces, biomolecular systems, and the technique of ab initio core level spectroscopy calculation.


Electronic Structure of Materials

Electronic Structure of Materials

Author: Rajendra Prasad

Publisher: Taylor & Francis

Published: 2013-07-23

Total Pages: 467

ISBN-13: 1466504706

DOWNLOAD EBOOK

Most textbooks in the field are either too advanced for students or don't adequately cover current research topics. Bridging this gap, Electronic Structure of Materials helps advanced undergraduate and graduate students understand electronic structure methods and enables them to use these techniques in their work.Developed from the author's lecture


Electronic Structure Calculations for Solids and Molecules

Electronic Structure Calculations for Solids and Molecules

Author: Jorge Kohanoff

Publisher: Cambridge University Press

Published: 2006-06-29

Total Pages: 372

ISBN-13: 1139453483

DOWNLOAD EBOOK

Electronic structure problems are studied in condensed matter physics and theoretical chemistry to provide important insights into the properties of matter. This 2006 graduate textbook describes the main theoretical approaches and computational techniques, from the simplest approximations to the most sophisticated methods. It starts with a detailed description of the various theoretical approaches to calculating the electronic structure of solids and molecules, including density-functional theory and chemical methods based on Hartree-Fock theory. The basic approximations are thoroughly discussed, and an in-depth overview of recent advances and alternative approaches in DFT is given. The second part discusses the different practical methods used to solve the electronic structure problem computationally, for both DFT and Hartree-Fock approaches. Adopting a unique and open approach, this textbook is aimed at graduate students in physics and chemistry, and is intended to improve communication between these communities. It also serves as a reference for researchers entering the field.


Electronic Structure of Disordered Alloys, Surfaces and Interfaces

Electronic Structure of Disordered Alloys, Surfaces and Interfaces

Author: Ilja Turek

Publisher: Springer Science & Business Media

Published: 1997

Total Pages: 340

ISBN-13: 9780792397984

DOWNLOAD EBOOK

An introduction to the study of basic electronic and magnetic properties of complex materials such as alloys, their surfaces, interfaces, and extended defects. Part I explores theoretical background, with chapters on the linear muffin-tin orbital method, Green function method, coherent potential approximation, self- consistency within atomic sphere approximation, and relativistic theory. Part II is devoted to applications including magnetic properties, numerical implementation, and interatomic interactions in alloys. Of interest to researchers in solid state theory, surface science, and computational materials research. Annotation copyrighted by Book News, Inc., Portland, OR.


First Principles Approaches to Spectroscopic Properties of Complex Materials

First Principles Approaches to Spectroscopic Properties of Complex Materials

Author: Cristiana Di Valentin

Publisher: Springer

Published: 2014-09-26

Total Pages: 397

ISBN-13: 3642550681

DOWNLOAD EBOOK

The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.


Electronic Structure and Properties

Electronic Structure and Properties

Author: Frank Y. Fradin

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 461

ISBN-13: 1483218279

DOWNLOAD EBOOK

Treatise on Materials Science and Technology, Volume 21: Electronic Structure and Properties covers the developments in electron theory and electron spectroscopies. The book discusses the electronic structure of perfect and defective solids; the photoelectron spectroscopy as an electronic structure probe; and the electron-phonon interaction. The text describes the elastic properties of transition metals; the electrical resistivity of metals; as well as the electronic structure of point defects in metals. Metallurgists, materials scientists, materials engineers, and students involved in the related fields will find the book useful.


Electronic Structure of Organic Semiconductors

Electronic Structure of Organic Semiconductors

Author: Luís Alcácer

Publisher: Morgan & Claypool Publishers

Published: 2018-12-07

Total Pages: 135

ISBN-13: 1643271687

DOWNLOAD EBOOK

Written in the perspective of an experimental chemist, this book puts together some fundamentals from chemistry, solid state physics and quantum chemistry, to help with understanding and predicting the electronic and optical properties of organic semiconductors, both polymers and small molecules. The text is intended to assist graduate students and researchers in the field of organic electronics to use theory to design more efficient materials for organic electronic devices such as organic solar cells, light emitting diodes and field effect transistors. After addressing some basic topics in solid state physics, a comprehensive introduction to molecular orbitals and band theory leads to a description of computational methods based on Hartree-Fock and density functional theory (DFT), for predicting geometry conformations, frontier levels and energy band structures. Topological defects and transport and optical properties are then addressed, and one of the most commonly used transparent conducting polymers, PEDOT:PSS, is described in some detail as a case study.


Berry Phases in Electronic Structure Theory

Berry Phases in Electronic Structure Theory

Author: David Vanderbilt

Publisher: Cambridge University Press

Published: 2018-11-01

Total Pages: 395

ISBN-13: 1108661300

DOWNLOAD EBOOK

Over the past twenty-five years, mathematical concepts associated with geometric phases have come to occupy a central place in our modern understanding of the physics of electrons in solids. These 'Berry phases' describe the global phase acquired by a quantum state as the Hamiltonian is changed. Beginning at an elementary level, this book provides a pedagogical introduction to the important role of Berry phases and curvatures, and outlines their great influence upon many key properties of electrons in solids, including electric polarization, anomalous Hall conductivity, and the nature of the topological insulating state. It focuses on drawing connections between physical concepts and provides a solid framework for their integration, enabling researchers and students to explore and develop links to related fields. Computational examples and exercises throughout provide an added dimension to the book, giving readers the opportunity to explore the central concepts in a practical and engaging way.


Computational Methods for Large Systems

Computational Methods for Large Systems

Author: Jeffrey R. Reimers

Publisher: John Wiley & Sons

Published: 2011-08-24

Total Pages: 568

ISBN-13: 0470934727

DOWNLOAD EBOOK

While its results normally complement the information obtained by chemical experiments, computer computations can in some cases predict unobserved chemical phenomena Electronic-Structure Computational Methods for Large Systems gives readers a simple description of modern electronic-structure techniques. It shows what techniques are pertinent for particular problems in biotechnology and nanotechnology and provides a balanced treatment of topics that teach strengths and weaknesses, appropriate and inappropriate methods. It’s a book that will enhance the your calculating confidence and improve your ability to predict new effects and solve new problems.