Organic Photoreceptors for Imaging Systems

Organic Photoreceptors for Imaging Systems

Author: Borsenberger

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 470

ISBN-13: 1482277395

DOWNLOAD EBOOK

This reference covers in detail the preparation and application of current and emerging organic materials used as xerographic photoreceptors, emphasizing the photo-electric properties of organic solids and evaluating their potential use in xerography.;Reviewing the development of xerography and the steps in the xerographic process, this volume: summarizes the properties, advantages and disadvantages of various classes of materials used as photoreceptors; describes the methods of characterizing the sensitometry of xerographic photoreceptors; examines the physics and chemistry of photogeneration and charge transport processes; and elucidates the sensimetry of different classes of organic materials.;Organic Photoreceptors for Imaging Systems is intended for imaging scientists, optical engineers and physicists, organic chemists, materials scienctists and students in these disciplines.


Organic Photoreceptors for Xerography

Organic Photoreceptors for Xerography

Author: Paul M. Borsenberger

Publisher: CRC Press

Published: 1998-04-29

Total Pages: 806

ISBN-13: 9780824701734

DOWNLOAD EBOOK

Presents fundamental, as well as state-of-the-art, information on the physics, chemistry, materials, fabrication, preparation, application and performance of organic photoreceptors in xerography. The book offers on-the-job situations to problems related to xerographic photoreceptors and related technologies, including electroluminescent, photorefractive, photovoltaic and transistor devices.


Electrical and Related Properties of Organic Solids

Electrical and Related Properties of Organic Solids

Author: R.W. Munn

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 442

ISBN-13: 9401157901

DOWNLOAD EBOOK

Organic solids exhibit a wide range of electrical and related properties. They occur as crystals, glasses, polymers and thin films; they may be insulators, semiconductors, conductors or superconductors; and they may show luminescence, nonlinear optical response, and complex dynamical behaviour. The book provides a broad survey of this area, written by international experts, one third being drawn from Eastern Europe. Electrical, optical, spectroscopic and structural aspects are all treated in a way that gives an excellent introduction to current themes in this highly interdisciplinary and practically important area. The coverage is especially strong in the areas where electrical and optical properties overlap, such as photoconductivity, electroluminescence, electroabsorption, electro-optics and photorefraction.


Handbook of Organic Materials for Optical and (Opto)Electronic Devices

Handbook of Organic Materials for Optical and (Opto)Electronic Devices

Author: Oksana Ostroverkhova

Publisher: Elsevier

Published: 2013-08-31

Total Pages: 832

ISBN-13: 0857098764

DOWNLOAD EBOOK

Small molecules and conjugated polymers, the two main types of organic materials used for optoelectronic and photonic devices, can be used in a number of applications including organic light-emitting diodes, photovoltaic devices, photorefractive devices and waveguides. Organic materials are attractive due to their low cost, the possibility of their deposition from solution onto large-area substrates, and the ability to tailor their properties. The Handbook of organic materials for optical and (opto)electronic devices provides an overview of the properties of organic optoelectronic and nonlinear optical materials, and explains how these materials can be used across a range of applications.Parts one and two explore the materials used for organic optoelectronics and nonlinear optics, their properties, and methods of their characterization illustrated by physical studies. Part three moves on to discuss the applications of optoelectronic and nonlinear optical organic materials in devices and includes chapters on organic solar cells, electronic memory devices, and electronic chemical sensors, electro-optic devices.The Handbook of organic materials for optical and (opto)electronic devices is a technical resource for physicists, chemists, electrical engineers and materials scientists involved in research and development of organic semiconductor and nonlinear optical materials and devices. Comprehensively examines the properties of organic optoelectronic and nonlinear optical materials Discusses their applications in different devices including solar cells, LEDs and electronic memory devices An essential technical resource for physicists, chemists, electrical engineers and materials scientists


Molecular Electronics

Molecular Electronics

Author: Michael C. Petty

Publisher: John Wiley & Sons

Published: 2008-03-11

Total Pages: 549

ISBN-13: 0470723882

DOWNLOAD EBOOK

This consistent and comprehensive text is unique in providing an informed insight into molecular electronics by contrasting the prospects for molecular scale electronics with the continuing development of the inorganic semiconductor industry. Providing a wealth of information on the subject from background material to possible applications, Molecular Electronics contains all the need to know information in one easily accessible place. Speculation about future developments has also been included to give the whole picture of this increasingly popular and important topic.


Organic Electronics

Organic Electronics

Author: Gregor Meller

Publisher: Springer Science & Business Media

Published: 2009-11-18

Total Pages: 338

ISBN-13: 3642045375

DOWNLOAD EBOOK

Dear Readers, Since the ground-breaking, Nobel-prize crowned work of Heeger, MacDiarmid, and Shirakawa on molecularly doped polymers and polymers with an alternating bonding structure at the end of the 1970s, the academic and industrial research on hydrocarbon-based semiconducting materials and devices has made encouraging progress. The strengths of semiconducting polymers are currently mainly unfolding in cheap and easily assembled thin ?lm transistors, light emitting diodes, and organic solar cells. The use of so-called “plastic chips” ranges from lightweight, portable devices over large-area applications to gadgets demanding a degree of mechanical ?exibility, which would overstress conventionaldevices based on inorganic,perfect crystals. The ?eld of organic electronics has evolved quite dynamically during the last few years; thus consumer electronics based on molecular semiconductors has gained suf?cient market attractiveness to be launched by the major manufacturers in the recent past. Nonetheless, the numerous challenges related to organic device physics and the physics of ordered and disordered molecular solids are still the subjects of a cont- uing lively debate. The future of organic microelectronics will unavoidably lead to new devi- physical insights and hence to novel compounds and device architectures of - hanced complexity. Thus, the early evolution of predictive models and precise, computationally effective simulation tools for computer-aided analysis and design of promising device prototypes will be of crucial importance.


Organic Semiconductors for Optoelectronics

Organic Semiconductors for Optoelectronics

Author: Hiroyoshi Naito

Publisher: John Wiley & Sons

Published: 2021-07-30

Total Pages: 388

ISBN-13: 1119146127

DOWNLOAD EBOOK

Comprehensive coverage of organic electronics, including fundamental theory, basic properties, characterization methods, device physics, and future trends Organic semiconductor materials have vast commercial potential for a wide range of applications, from self-emitting OLED displays and solid-state lighting to plastic electronics and organic solar cells. As research in organic optoelectronic devices continues to expand at an unprecedented rate, organic semiconductors are being applied to flexible displays, biosensors, and other cost-effective green devices in ways not possible with conventional inorganic semiconductors. Organic Semiconductors for Optoelectronics is an up-to-date review of the both the fundamental theory and latest research and development advances in organic semiconductors. Featuring contributions from an international team of experts, this comprehensive volume covers basic properties of organic semiconductors, characterization techniques, device physics, and future trends in organic device development. Detailed chapters provide key information on the device physics of organic field-effect transistors, organic light-emitting diodes, organic solar cells, organic photosensors, and more. This authoritative resource: Provides a clear understanding of the optoelectronic properties of organic semiconductors and their influence to overall device performance Explains the theories behind relevant mechanisms in organic semiconducting materials and in organic devices Discusses current and future trends and challenges in the development of organic optoelectronic devices Reviews electronic properties, device mechanisms, and characterization techniques of organic semiconducting materials Covers theoretical concepts of optical properties of organic semiconductors including fluorescent, phosphorescent, and thermally-assisted delayed fluorescent emitters An important new addition to the Wiley Series in Materials for Electronic & Optoelectronic Applications, Organic Semiconductors for Optoelectronics bridges the gap between advanced books and undergraduate textbooks on semiconductor physics and solid-state physics. It is essential reading for academic researchers, graduate students, and industry professionals involved in organic electronics, materials science, thin film devices, and optoelectronics research and development.


Self-Organized Organic Semiconductors

Self-Organized Organic Semiconductors

Author: Quan Li

Publisher: John Wiley & Sons

Published: 2011-03-03

Total Pages: 376

ISBN-13: 1118009045

DOWNLOAD EBOOK

This book focuses on the exciting topic on self-organized organic semiconductors – from materials to device applications. It offers up-to-date and accessible coverage of self-organized semiconductors for organic chemistry, polymer science, liquid crystals, materials science, material engineering, electrical engineering, chemical engineering, optics, optic-electronics, nanotechnology and semiconductors. Chapters cover chemistry, physics, processing, and characterization. The applications include photovoltaics, light-emitting diodes (LEDs), and transistors.