Atomic and Molecular Wires

Atomic and Molecular Wires

Author: C. Joachim

Publisher: Springer Science & Business Media

Published: 1997-07-31

Total Pages: 254

ISBN-13: 9780792346289

DOWNLOAD EBOOK

This volume contains the proceedings of the NATO Advanced Research Workshop on "Atomic and Molecular Wires". It was sponsored by the Ministry of Scientific Affairs Division special program on Nanoscale Science with the support of the CNRS and the Max Planck Institute. Scientists working or interested in the properties of wires at a subnanoscale were brought together in Les Houches (France) from 6 to 10 May 1996. Subnanoscale wires can be fabricated either by surface physicists (atomic wires) or by synthetic chemists (molecular wires). Both communities present their foremost advances using, for example, STM to assemble atomic lines atom for atom, to fabricate a mask for such a line or using the wide range of chemical synthesis techniques to obtain long, rigid and conjugated oligomers. Interconnecting such tiny wires to sources (voltage, current) continues to demand a great technological effort. But nanolithography associated with microfabrication or STM are now clearly identified paths for measuring the electrical resistance of an atomic or a molecular wire. The first measurements have been reported on Xe , benzene, C ' di(phenylene-ethynylene) showing 2 60 the need for a deeper understanding of transport phenomena through subnanowires. Such transport phenomena like tunnel (off-resonance) transport and Coulomb blockade have been discussed by theorists with an emphasis on the exponential decrease of the tunnel current with the wire length versus the ballistic regime of transport.


Vibronic Interactions in Molecules and Crystals

Vibronic Interactions in Molecules and Crystals

Author: Isaac B. Bersuker

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 434

ISBN-13: 3642834795

DOWNLOAD EBOOK

Vibronic interaction effects constitute a new field of investigation in the physics and chemistry of molecules and crystals that combines all the phenomena and laws originating from the mixing of different electronic states by nuclear displacements. This field is based on a new concept which goes beyond the separate descriptions of electronic and nuclear motions in the adiabatic approximation. Publications on this topic often appear under the title of the lahn-Thller effect, although the area of application of the new approach is much wider: the term vibronic interaction seems to be more appropriate to the field as a whole. The present understanding of the subject was reached only recently, during the last quarter of a century. As a result of intensive development of the theory and experiment, it was shown that the nonadiabatic mixing of close-in-energy elec tronic states under nuclear displacements and the back influence of the modified electronic structure on the nuclear dynamics result in a series of new effects in the properties of molecules and crystals. The applications of the theory of vibronic in of spectroscopy [including visible, ultraviolet, in teractions cover the full range frared, Raman, EPR, NMR, nuclear quadrupole resonance (NQR), nuclear gam ma resonance (NOR), photoelectron and x-ray spectroscopy], polarizability and magnetic susceptibility, scattering phenomena, ideal and impurity crystal physics and chemistry (including structural as well as ferroelectric phase transitions), stereochemistry and instability of molecular (including biological) systems, mechanisms of chemical reactions and catalysis.


Molecular Electronics

Molecular Electronics

Author: Juan Carlos Cuevas

Publisher: World Scientific

Published: 2010

Total Pages: 724

ISBN-13: 9814282588

DOWNLOAD EBOOK

This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general. Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.


Molecular Electronics: An Introduction To Theory And Experiment

Molecular Electronics: An Introduction To Theory And Experiment

Author: Elke Scheer

Publisher: World Scientific

Published: 2010-06-23

Total Pages: 724

ISBN-13: 9814466913

DOWNLOAD EBOOK

This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general.Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.


Introducing Molecular Electronics

Introducing Molecular Electronics

Author: Gianaurelio Cuniberti

Publisher: Springer

Published: 2006-05-21

Total Pages: 526

ISBN-13: 3540315144

DOWNLOAD EBOOK

Klaus von Klitzing Max-Planck-Institut fur ̈ Festk ̈ orperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany Already many Cassandras have prematurely announced the end of the silicon roadmap and yet, conventional semiconductor-based transistors have been continuously shrinking at a pace which has brought us to nowadays cheap and powerful microelectronics. However it is clear that the traditional scaling laws cannot be applied if unwanted tunnel phenomena or ballistic transport dominate the device properties. It is generally expected, that a combination of silicon CMOS devices with molecular structure will dominate the ?eld of nanoelectronics in 20 years. The visionary ideas of atomic- or molecular-scale electronics already date back thirty years but only recently advanced nanotechnology, including e.g. scanning tunneling methods and mechanically controllable break junctions, have enabled to make distinct progress in this direction. On the level of f- damentalresearch,stateofthearttechniquesallowtomanipulate,imageand probechargetransportthroughuni-molecularsystemsinanincreasinglyc- trolled way. Hence, molecular electronics is reaching a stage of trustable and reproducible experiments. This has lead to a variety of physical and chemical phenomena recently observed for charge currents owing through molecular junctions, posing new challenges to theory. As a result a still increasing n- ber of open questions determines the future agenda in this ?eld.


Nano and Molecular Electronics Handbook

Nano and Molecular Electronics Handbook

Author: Sergey Edward Lyshevski

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 912

ISBN-13: 1420008145

DOWNLOAD EBOOK

There are fundamental and technological limits of conventional microfabrication and microelectronics. Scaling down conventional devices and attempts to develop novel topologies and architectures will soon be ineffective or unachievable at the device and system levels to ensure desired performance. Forward-looking experts continue to search for new paradigms to carry the field beyond the age of microelectronics, and molecular electronics is one of the most promising candidates. The Nano and Molecular Electronics Handbook surveys the current state of this exciting, emerging field and looks toward future developments and opportunities. Molecular and Nano Electronics Explained Explore the fundamentals of device physics, synthesis, and design of molecular processing platforms and molecular integrated circuits within three-dimensional topologies, organizations, and architectures as well as bottom-up fabrication utilizing quantum effects and unique phenomena. Technology in Progress Stay current with the latest results and practical solutions realized for nanoscale and molecular electronics as well as biomolecular electronics and memories. Learn design concepts, device-level modeling, simulation methods, and fabrication technologies used for today's applications and beyond. Reports from the Front Lines of Research Expert innovators discuss the results of cutting-edge research and provide informed and insightful commentary on where this new paradigm will lead. The Nano and Molecular Electronics Handbook ranks among the most complete and authoritative guides to the past, present, and future of this revolutionary area of theory and technology.


Electronic Transport in Mesoscopic Systems

Electronic Transport in Mesoscopic Systems

Author: Supriyo Datta

Publisher: Cambridge University Press

Published: 1997-05-15

Total Pages: 398

ISBN-13: 1139643010

DOWNLOAD EBOOK

Advances in semiconductor technology have made possible the fabrication of structures whose dimensions are much smaller than the mean free path of an electron. This book gives a thorough account of the theory of electronic transport in such mesoscopic systems. After an initial chapter covering fundamental concepts, the transmission function formalism is presented, and used to describe three key topics in mesoscopic physics: the quantum Hall effect; localisation; and double-barrier tunnelling. Other sections include a discussion of optical analogies to mesoscopic phenomena, and the book concludes with a description of the non-equilibrium Green's function formalism and its relation to the transmission formalism. Complete with problems and solutions, the book will be of great interest to graduate students of mesoscopic physics and nanoelectronic device engineering, as well as to established researchers in these fields.


Oxford Handbook of Nanoscience and Technology

Oxford Handbook of Nanoscience and Technology

Author: A. V. Narlikar

Publisher: OUP Oxford

Published: 2010-02-11

Total Pages: 919

ISBN-13: 0191035513

DOWNLOAD EBOOK

This is an agenda-setting and high-profile book that presents an authoritative and cutting-edge analysis of nanoscience and technology. The Oxford Handbook of Nanoscience and Technology provides a comprehensive and accessible overview of the major achievements in different aspects of this field. The Handbook comprises 3 volumes, structured thematically, with 25 chapters each. Volume I presents fundamental issues of basic physics, chemistry, biochemistry, tribology etc. of nanomaterials. Volume II focuses on the progress made with host of nanomaterials including DNA and protein based nanostructures. Volume III highlights engineering and related developments, with a focus on frontal application areas. All chapters are written by noted international experts in the field. The book should be useful for final year undergraduates specializing in the field. It should prove indispensable to graduate students, and serious researchers from academic and industrial sectors working in the field of Nanoscience and Technology from different disciplines including Physics, Chemistry, Biochemistry, Biotechnology, Medicine, Materials Science, Metallurgy, Ceramics, Information Technology as well as Electrical, Electronic and Computational Engineering.


Encyclopedia of Supramolecular Chemistry

Encyclopedia of Supramolecular Chemistry

Author: J. L. Atwood

Publisher: CRC Press

Published: 2004

Total Pages: 1002

ISBN-13: 9780824747244

DOWNLOAD EBOOK

Covers the fundamentals of supramolecular chemistry; supramolecular advancements and methods in the areas of chemistry, biochemistry, biology, environmental and materials science and engineering, physics, computer science, and applied mathematics.