Electron Transfer in Nanomaterials
Author: Garry Rumbles
Publisher: The Electrochemical Society
Published: 2006
Total Pages: 472
ISBN-13: 9781566774352
DOWNLOAD EBOOKRead and Download eBook Full
Author: Garry Rumbles
Publisher: The Electrochemical Society
Published: 2006
Total Pages: 472
ISBN-13: 9781566774352
DOWNLOAD EBOOKAuthor: Kenji Kano
Publisher: Springer Nature
Published: 2020-11-13
Total Pages: 145
ISBN-13: 9811589607
DOWNLOAD EBOOKThis book covers the fundamental aspects of the electrochemistry and redox enzymes that underlie enzymatic bioelectrocatalysis, in which a redox enzyme reaction is coupled with an electrode reaction. Described here are the basic concept and theoretical aspects of bioelectrocatalysis and the various experimental techniques and materials used to study and characterize related problems. Also included are the various applications of bioelectrocatalysis to bioelectrochemical devices including biosensors, biofuel cells, and bioreactors. This book is a unique source of information in the area of enzymatic bioelectrocatalysis, approaching the subject from a cross-disciplinary point of view.
Author: Gang Chen
Publisher: Oxford University Press
Published: 2005-03-03
Total Pages: 570
ISBN-13: 9780199774685
DOWNLOAD EBOOKThis is a graduate level textbook in nanoscale heat transfer and energy conversion that can also be used as a reference for researchers in the developing field of nanoengineering. It provides a comprehensive overview of microscale heat transfer, focusing on thermal energy storage and transport. Chen broadens the readership by incorporating results from related disciplines, from the point of view of thermal energy storage and transport, and presents related topics on the transport of electrons, phonons, photons, and molecules. This book is part of the MIT-Pappalardo Series in Mechanical Engineering.
Author: Zahid Ali Khan Durrani
Publisher: World Scientific
Published: 2010
Total Pages: 300
ISBN-13: 1848164130
DOWNLOAD EBOOKThis book provides a review of research on single-electron devices and circuits in silicon. It considers the design, fabrication, and characterization of single-electron transistors, single-electron memory devices, few-electron transfer devices such as electron pumps and turnstiles, and single-electron logic devices. In all cases, a review of various device designs is provided, and in many cases, the devices developed during the author's own research work are used as detailed examples. An introduction to the physics of the single-electron charging effects is also provided.
Author: Nabisab Mujawar Mubarak
Publisher: Elsevier
Published: 2023-03-15
Total Pages: 426
ISBN-13: 0323910769
DOWNLOAD EBOOKAdvanced Nanomaterials and Nanocomposites for Bioelectrochemical Systems covers advancements in nanomaterial and nanocomposite applications for microbial fuel cells. One of the advantages of using microbial fuel cells is the simultaneous treatment of wastewater and the generation of electricity from complex organic waste and biomass, which demonstrates that microbial fuel cells are an active area of frontier research. The addition of microorganisms is essential to enhance the reaction kinetics. This type of fuel cell helps to convert complex organic waste into useful energy through the metabolic activity of microorganisms, thereby generating energy. By incorporating nano-scale fillers into the nanocomposite matrix, the performance of the anode material can be improved. This is an important reference source for materials scientists and engineers who want to learn more about how nanotechnology is being used to create more efficient fuel cells. - Describes the major nanomaterials and nanocomposites used in microbial fuel cells - Explains how microbial fuel cells are being used in renewable energy applications - Assesses the challenges of manufacturing nanomaterials for microbial fuel cells on an industrial scale
Author: Gary Hodes
Publisher: John Wiley & Sons
Published: 2001-05-25
Total Pages: 336
ISBN-13: 9783527298365
DOWNLOAD EBOOKEngineering of nanophase materials and devices is of vital interest in electronics, semiconductors and optics, catalysis, ceramics and magnetism. Research associated with nanoparticles has widely spread and diffused into every field of scientific research, forming a trend of nanocrystal engineered materials. Electrochemical methods are widely used for the preparation of nanoparticles and the electrochemical properties of such nanomaterials are most relevant for their applications. This comprehensive reference work will appeal to advanced graduate students and researchers in the field specialized in electrochemistry, materials physics and materials science.
Author: B. Raneesh
Publisher: John Wiley & Sons
Published: 2021-02-17
Total Pages: 432
ISBN-13: 1119363578
DOWNLOAD EBOOKMetal Oxide Nanocomposites: Synthesis and Applications summarizes many of the recent research accomplishments in the area of metal oxide-based nanocomposites. This book focussing on the following topics: Nanocomposites preparation and characterization of metal oxide nanocomposites; synthesis of core/shell metal oxide nanocomposites; multilayer thin films; sequential assembly of nanocomposite materials; semiconducting polymer metal oxide nanocomposites; graphene-based metal and metal oxide nanocomposites; carbon nanotube–metal–oxide nanocomposites; silicon mixed oxide nanocomposites; gas semiconducting sensors based on metal oxide nanocomposites; metal ]organic framework nanocomposite for hydrogen production and nanocomposites application towards photovoltaic and photocatalytic.
Author: Misook Kang
Publisher: MDPI
Published: 2020-06-17
Total Pages: 136
ISBN-13: 3039363107
DOWNLOAD EBOOKEnergy crises and global warming pose serious challenges to researchers in their attempt to develop a sustainable society for the future. Solar energy conversion is a remarkable, clean, and sustainable way to nullify the effects of fossil fuels. The findings of photocatalytic hydrogen production (PCHP) by Fujishima and Honda propose that “water will be the coal for the future”. Hydrogen is a carbon-free clean fuel with a high specific energy of combustion. Titanium oxide (TiO2), graphitic-carbon nitride (g-C3N4) and cadmium sulfide (CdS) are three pillars of water splitting photocatalysts owing to their superior electronic and optical properties. Tremendous research efforts have been made in recent years to fabricate visible or solar-light, active photocatalysts. The significant features of various oxide, sulfide, and carbon based photocatalysts for cost-effective hydrogen production are presented in this Special Issue. The insights of sacrificial agents on the hydrogen production efficiency of catalysts are also presented in this issue.
Author: Malkiat S. Johal
Publisher: CRC Press
Published: 2018-04-17
Total Pages: 680
ISBN-13: 1482253232
DOWNLOAD EBOOKPraise for the first edition "clear and informative” ―Chemistry World The authors provide the perfect training tool for the workforce in nanotech development by presenting the fundamental principles that govern the fabrication, characterization, and application of nanomaterials. This edition represents a complete overhaul, giving a much more complete, self-contained introduction. As before, the text avoids excessive mathematical detail and is written in an easy to follow, appealing style suitable for anyone, regardless of background in physics, chemistry, engineering, or biology. The organization has been revised to include fundamental physical chemistry and physics pertaining to relevant electrical, mechanical, and optical material properties. Incorporates new and expanded content on hard materials, semiconductors for nanoelectronics, and nonlinear optical materials. Adds many more worked examples and end-of-chapter problems. Provides more complete coverage of fundamentals including relevant aspects of thermodynamics, kinetics, quantum mechanics, and solid-state physics, and also significantly expands treatment of solid-phase systems. Malkiat S. Johal is a professor of physical chemistry at Pomona College, and earned his doctorate in physical chemistry at the University of Cambridge, UK. Lewis E. Johnson is a research scientist at the University of Washington, where he also earned his doctorate in chemistry and nanotechnology.
Author: Tomas Torres
Publisher: John Wiley & Sons
Published: 2013-10-14
Total Pages: 636
ISBN-13: 1118016017
DOWNLOAD EBOOKDiscover a new generation of organic nanomaterials and their applications Recent developments in nanoscience and nanotechnology have given rise to a new generation of functional organic nanomaterials with controlled morphology and well-defined properties, which enable a broad range of useful applications. This book explores some of the most important of these organic nanomaterials, describing how they are synthesized and characterized. Moreover, the book explains how researchers have incorporated organic nanomaterials into devices for real-world applications. Featuring contributions from an international team of leading nanoscientists, Organic Nanomaterials is divided into five parts: Part One introduces the fundamentals of nanomaterials and self-assembled nanostructures Part Two examines carbon nanostructures from fullerenes to carbon nanotubes to graphene reporting on properties, theoretical studies, and applications Part Three investigates key aspects of some inorganic materials, self-assembled monolayers, organic field effect transistors, and molecular self-assembly at solid surfaces Part Four explores topics that involve both biological aspects and nanomaterials such as biofunctionalized surfaces Part Five offers detailed examples of how organic nanomaterials enhance sensors and molecular photovoltaics Most of the chapters end with a summary highlighting the key points. References at the end of each chapter guide readers to the growing body of original research reports and reviews in the field. Reflecting the interdisciplinary nature of organic nanomaterials, this book is recommended for researchers in chemistry, physics, materials science, polymer science, and chemical and materials engineering. All readers will learn the principles of synthesizing and characterizing new organic nanomaterials in order to support a broad range of exciting new applications.