Electron Theory in Alloy Design
Author: David G. Pettifor
Publisher: Routledge
Published: 1992
Total Pages: 328
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: David G. Pettifor
Publisher: Routledge
Published: 1992
Total Pages: 328
ISBN-13:
DOWNLOAD EBOOKAuthor: Masahiko Morinaga
Publisher: Elsevier
Published: 2018-11-16
Total Pages: 290
ISBN-13: 0128147075
DOWNLOAD EBOOKA Quantum Approach to Alloy Design: An Exploration of Material Design and Development Based Upon Alloy Design Theory and Atomization Energy Method presents a molecular orbital approach to alloy design that is based on electronic structure calculations using the DV-X alpha cluster method and new alloying parameters obtained from these calculations. Topics discussed include alloy properties, such as corrosion resistance, shape memory effect and super-elasticity that are treated by using alloying parameters in biomedical titanium alloys. This book covers various topics of not only metals and alloys, but also metal oxides, hydrides and even hydrocarbons. In addition, important alloy properties, such as strength, corrosion resistance, hydrogen storage and catalysis are treated in view of electron theory. - Presents alloy design theory and the atomization-energy method and its use for the fundamental understanding of materials and materials design and development - Discusses, for the first time, the atomization-energy analysis of the local lattice strains introduced around alloying elements in metals - Illustrates a simplified approach to predict the structure and phases stability of new alloys/materials
Author: Alan Cottrell
Publisher: Woodhead Publishing Limited
Published: 1998
Total Pages: 144
ISBN-13:
DOWNLOAD EBOOKAn elementary, non-mathematical introduction to electron theory for undergraduates.
Author: Abhijit Mookerjee
Publisher: CRC Press
Published: 2002-11-28
Total Pages: 396
ISBN-13: 9780415272490
DOWNLOAD EBOOKUnderstanding the electronic structure of solids is a basic part of theoretical investigation in physics. Application of investigative techniques requires the solid under investigation to be "periodic." However, this is not always the case. This volume addresses three classes of "non-periodic" solids currently undergoing the most study: alloys, surfaces and clusters. Understanding the electronic structure of these systems is fundamental not only for the basic science, but also constitutes a very important step in various technological aspects, such as tuning their stabilities, chemical and catalytic reactivities and magnetism. Expert practitioners give an up-to-date account of the field with enough detailed background so that even a newcomer can follow the development. The theoretical framework is discussed in addition to the present status of knowledge in the field. Electronic Structure of Alloys, Surfaces and Clusters also includes an extensive bibliography which provides a comprehensive reading list of work on the topic.
Author: K.Srinivasan
Publisher: Clever Fox Publishing
Published: 2022-11-04
Total Pages: 238
ISBN-13:
DOWNLOAD EBOOKIt is a textbook for B.Tech Metallurgical &Materials Engg. and Electronics &Computer Engg. students.Also for M.Sc Materials Science &Solid State Physics -Chemistry students.It discussed the electronic properties based on the atomic structure.It discussed the various electronic materials and methods to produce them.Applications based on such materials are also dealt within.
Author: Ilja Turek
Publisher: Springer Science & Business Media
Published: 2013-11-27
Total Pages: 327
ISBN-13: 1461562554
DOWNLOAD EBOOKAt present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use because they require an excessive number of atoms per elementary cell, and are not able to account fully for e.g. substitu tional disorder and the true semiinfinite geometry of surfaces. Such problems can be solved more appropriately by Green function techniques and multiple scattering formalism.
Author: Zhentao Yu
Publisher: Elsevier
Published: 2022-01-21
Total Pages: 246
ISBN-13: 0128241659
DOWNLOAD EBOOKTitanium Alloys for Biomedical Development and Applications: Design, Microstructure, Properties and Application systematically introduces basic theories and progress in the research of biomedical ß-Ti alloys achieved by researchers from different fields. It focuses on a high-strength and low elastic modulus biomedical ß-Ti alloy (TLM), etc. designed by the authors. The alloy design methods, microstructural characteristics, mechanical properties, surface treatment methods and biocompatibility of the TLM alloy are discussed in detail, along with a concise description of the medical devices made from this alloy and the application examples. This book will appeal to researchers as well as students from different disciplines, including materials science, biology, medicine and engineering fields. - Fills the knowledge gap in the current research and application of newly developed biomedical ß-Ti alloys - Discusses the selection principles used for proper biomedical Ti alloys for medical and dental devices - Includes details on the technological data basis for the application of biomedical ß-Ti alloys with a focus on the TLM ß-Ti alloy
Author: Ashutosh Tiwari
Publisher: John Wiley & Sons
Published: 2016-08-12
Total Pages: 528
ISBN-13: 1119242541
DOWNLOAD EBOOKThe engineering of materials with advanced features is driving the research towards the design of innovative materials with high performances. New materials often deliver the best solution for structural applications, precisely contributing towards the finest combination of mechanical properties and low weight. The mimicking of nature's principles lead to a new class of structural materials including biomimetic composites, natural hierarchical materials and smart materials. Meanwhile, computational modeling approaches are the valuable tools complementary to experimental techniques and provide significant information at the microscopic level and explain the properties of materials and their very existence. The modeling also provides useful insights to possible strategies to design and fabricate materials with novel and improved properties. The book brings together these two fascinating areas and offers a comprehensive view of cutting-edge research on materials interfaces and technologies the engineering materials. The topics covered in this book are divided into 2 parts: Engineering of Materials, Characterizations & Applications and Computational Modeling of Materials. The chapters include the following: Mechanical and resistance behavior of structural glass beams Nanocrystalline metal carbides - microstructure characterization SMA-reinforced laminated glass panel Sustainable sugarcane bagasse cellulose for papermaking Electrospun scaffolds for cardiac tissue engineering Bio-inspired composites Density functional theory for studying extended systems First principles based approaches for modeling materials Computer aided materials design Computational materials for stochastic electromagnets Computational methods for thermal analysis of heterogeneous materials Modelling of resistive bilayer structures Modeling tunneling of superluminal photons through Brain Microtubules Computer aided surgical workflow modeling Displaced multiwavelets and splitting algorithms
Author: R.W. Cahn
Publisher: Elsevier
Published: 1996-02-09
Total Pages: 2889
ISBN-13: 0080538940
DOWNLOAD EBOOKThis is the fourth edition of a work which first appeared in 1965. The first edition had approximately one thousand pages in a single volume. This latest volume has almost three thousand pages in 3 volumes which is a fair measure of the pace at which the discipline of physical metallurgy has grown in the intervening 30 years.Almost all the topics previously treated are still in evidence in this version which is approximately 50% bigger than the previous edition. All the chapters have been either totally rewritten by new authors or thoroughly revised and expanded, either by the third-edition authors alone or jointly with new co-authors. Three chapters on new topics have been added, dealing with dry corrosion, oxidation and protection of metal surfaces; the dislocation theory of the mechanical behavior of intermetallic compounds; and (most novel) a chapter on polymer science for metallurgists, which analyses the conceptual mismatch between metallurgists' and polymer scientists' way of looking at materials. Special care has been taken throughout all chapters to incorporate the latest experimental research results and theoretical insights. Several thousand citations to the research and review literature are included in this edition. There is a very detailed subject index, as well as a comprehensive author index.The original version of this book has long been regarded as the standard text in physical metallurgy and this thoroughly rewritten and updated version will retain this status.
Author: M J Adams
Publisher: World Scientific
Published: 1996-08-16
Total Pages: 450
ISBN-13: 1783263571
DOWNLOAD EBOOKThis book records the contributions of about 30 speakers who were invited to review a wide range of topics in the field of solid-solid interactions. Each chapter includes discussion points drawn from about 125 attendees at the forum. The first part of the book is concerned with short range interactions and includes chapters on contact mechanics, nano-indentation adhesion, friction, wear and grandular mechanics. The second part is concerned with long range forces and includes chapters on the direct measurement of these forces, including those that arise in lubricated contacts and their role in controlling the rheological properties of particulate suspensions.